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ABSTRACT 

 Silicon carbide (SiC) is one of the hardest known materials and is also, by good 

fortune, a wide bandgap semiconductor.  While the application of SiC for high-

temperature and high-power electronics is fairly well known, its utility as a highly robust, 

chemically-inert material for microelectrical mechanical systems (MEMS) is only 

beginning to be well recognized. SiC can be grown on both native SiC substrates or on Si 

using heteroepitaxial growth methods which affords the possibility to use Si 

micromachining methods to fabricate advanced SiC MEMS devices. 

The control of film stress in heteroepitaxial silicon carbide films grown on 

polysilicon-on-oxide substrates has been investigated.  It is known that the size and 

structure of grains within polycrystalline films play an important role in determining the 

magnitude and type of stress present in a film, i.e. tensile or compressive.  Silicon carbide 

grown on LPCVD polysilicon seed-films exhibited a highly-textured grain structure and 

displayed either a positive or negative stress gradient depending on the initial thickness of 

the polysilicon seed-layer.  In addition a high-quality (111) oriented 3C-SiC on (111)Si 

heteroepitaxial process has been developed and is reported. SiC MEMS structures, both 

polycrystalline (i.e., poly-3C-SiC) and monocrystalline (i.e., 3C-SiC) were realized using 

micromachining methods. These structures were used to extract the stress properties of 

the films, with a particular focus on separating the gradient and uniform stress 

components.  
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CHAPTER 1: SILICON CARBIDE: A MATERIAL FOR 

MICROELECTROMECHANICAL SYSTEMS (MEMS) 

 

1.1 Introduction 

 Although silicon is a well-suited material for a wide range of sensor and actuator 

applications, it is limited for electronic devices at temperatures below 250°C. In addition 

its mechanical properties begin to degrade at temperatures above 600°C (Mehregany, 

1998) which limit its use for high temperature and harsh environment applications.  

Consequently when silicon-based MEMS technology is used in harsh environments, the 

expensive and bulky cooling and packaging systems that need to be implemented in order 

to keep the devices within operating limits are expensive or sometimes prohibitive.  As 

the demand grows to implement cost-saving and space-saving microsensor and 

microactuator technologies in harsh environments, one must look for other material 

options that can satisfy the requirement of long-term device survivability and low-

production costs.  To meet the demands for high-temperature (≥ 350°C) MEMS, there is 

a need for an electronic material exhibiting a wide bandgap, good mechanical (and 

chemical) stability, and good thermal stability over a large temperature range.  An ideal 

material platform for harsh-environment MEMS would also exhibit an extensive range of 

robustness that would withstand a multitude of environments.  It would be chemically 

inert to corrosive attack, it would exhibit outstanding wear resistance, it would 
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demonstrate radiation-hardness (i.e., rad-hard), and it could be biologically implantable.  

Although this may appear to be an unrealistic “wish-list”, there are material candidates 

that seem to meet these demanding criteria. 

 Diamond is one such candidate that is currently being explored.  It is the hardest 

known natural material, scoring a 10 on the Mohs hardness scale.  It has the highest 

thermal conductivity of any known material; five times greater than silver, the second 

highest thermal conductor.  It has a wide band gap and can be doped to exhibit 

semiconductor properties.  It has excellent thermal and mechanical stability, except in 

high-temperature (≥ 700°C) oxygen environments, in which it readily oxidizes (i.e., 

surface turns to graphite).  This drawback excludes it for use as a material for combustion 

microsensors.  Therefore diamond-based MEMS have found limited use, mostly in low-

temperature RF applications and in biomedical applications as a coating for Si-based 

sensors and devices. 

 Silicon Carbide (SiC) is another candidate that appears to fulfill the requirements 

of a MEMS platform material for a multitude of harsh environmental conditions.  It has 

long been recognized as a semiconductor with excellent physical, electrical and chemical 

characteristics (see Table 1.1).  It has excellent mechanical and electrical stability at high 

temperatures.  It is inert to nearly all wet chemistry, and it can only be etched by molten 

alkaline hydroxides at temperatures ≥600°C.  Silicon carbide doesn’t melt, but sublimes 

at temperatures exceeding 1800°C.  Silicon carbide demonstrates excellent wear 

resistance, having a 9.15 wear resistance rating as compared to 10 for diamond.  It is the 

third hardest known material, only diamond and boron nitride exceed it.  Silicon carbide 

can be thermally oxidized to form a passivating SiO2 layer, although the oxidation rate is 



www.manaraa.com

3 

slow when compared to silicon.  Surface passivation using a hydrogen-terminated surface 

has been shown to form flatband conditions for several hours (C. Coletti 2008).  100mm 

diameter silicon carbide wafers grown from bulk crystals are commercially available 

from several manufacturers; 150mm wafers with defect densities less than 10 cm-2 have 

been recently reported.  Monocrystalline and polycrystalline silicon carbide has been 

epitaxially grown on silicon substrates up to 150mm in diameter. 

 

Table 1.1  Properties of commonly used SiC polytypes compared with Si 
and Diamond. (Casady and Johnson 1996) (Harris 1995). 

 

Property 4H-SiC 6H-SiC 3C-SiC Si Diamond 

Energy bandgap at 300K 3.20 3.00 2.29 1.12 5.45 

Intrinsic Carrier 
Concentration at 300K 
(cm-3) 

5x10-9 1.6x10-6 1.5x10-1 1x1010 ~10-27 

Critical breakdown 
electric field (MV/cm) 

2.2 2.5 2.12 0.25 1-10 

Saturated electron drift 
velocity (x 107 cm/s) 

2.0 2.0 2.5 1.0 1.5 

Electron mobility 
(cm2/V-s) 

1000 600 800 1450 480 

Hole mobility (cm2/V-s) 115 100 40 470 1600 

Thermal Conductivity at 
300K (W cm-1 K-1) 

3.7 3.6 3.6 1.49 6-20 

Coefficient of Thermal 
Expansion at 300K  
(10-6 K-1) 

4.3 c 
4.7 ║c 

4.3 c 
4.7 ║c  

3.2 3.0 1.0 

Lattice constant (a, c in Å) a=3.0730 
c=10.053 

a=3.0806 
c=15.1173 a=4.3596 a=5.430 a=3.5668 

Elastic coefficient* (GPa) 
*calculated C44=600 

C11=500 
C12=92 
C44=168 

C11=352 
C12=120 
C44=233 

C11=167 
C12=65 
C44=80 

C11=1079 
C12=124 
C44=578 
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1.2 Heteroepitaxial Silicon Carbide 

 Epitaxy is the growth of a thin layer on a crystal substrate in which the substrate is 

a template for the growth such that the proper atomic arrangement is achieved.  

Heteroepitaxy is the growth of an epitaxial layer on a seed crystal of a different crystal 

type.  Cubic SiC, more commonly referred to as 3C-SiC, may be heteroepitaxially grown 

on Si substrates.  Since the growth of single crystal, large-area, bulk 3C-SiC crystals has 

not been demonstrated, heteroepitaxy is needed to grow 3C-SiC crystals.  However, the 

near 20% lattice mismatch between Si and SiC typically leads to an epitaxial film that is 

highly defective and therefore not suitable for electronic devices.  This is generally 

because interfacial defects propagate into the 3C-SiC device layer and result in high 

leakage currents in 3C-SiC/Si devices.  Indeed, the issues impeding the growth of high 

quality, monocrystalline 3C-SiC/Si heteroepitaxial films have proven to be so difficult to 

overcome that many groups have abandoned 3C-SiC/Si.  In this thesis, we aim to use a 

novel substrate alongside a tailored stoichiometric bilayer structure to mitigate film 

stresses arising from defects with the goal of developing device-quality 3C-SiC/Si layers. 
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Figure 1.1  Illustration of the effect of lattice mismatch in heteroepitaxy.  The ┴ symbol 
denotes the location of a missing row of atoms which is known as a line defect.  Note the 
stretched and compressed covalent bonds at the interface resulting from the lattice 
mismatch between the two crystals. [ref] 

 

 As seen in the above figure, there is a strain in the epilayer from an attempt by the 

epilayer (a 3C-SiC = 4.3596Å) to accommodate the substrate’s lattice constant (aSi = 

5.43095Å) (Harris 1995).  The attempt to accommodate the mismatch not only produces 

crystal defects, but these defects in the epitaxial layer have a mosaic morphology in the 

case of the (100)3C-SiC/(100)Si system.  While a carbonization step is normally 

employed which converts the starting Si surface to SiC and acts as a buffer layer to 

reduce the stress, this does not completely accommodate the lattice mismatch.  With this 

buffer layer, there are still a fair amount of dislocations which must be reduced if 3C-SiC 

is to be useful for electronic devices such as MOSFETs. 

 One of the most successful methods to grow 3C-SiC is by chemical vapor 

deposition (CVD).  The standard precursor chemistry typically used is the silane-

propane-hydrogen gas system.  Although extensive work has been performed since the 

early 1980’s, there is still a lack of good quality 3C-SiC on Si epitaxial material.  While 

3C-SiC 
 
 

Si 

3C-SiC 

Si 
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growth rates up to 40 m/h on undulant Si (100) substrates by cold-wall CVD have been 

reported to produce SiC substrates with near bulk quality, defects originating from the 

undulant substrate persist (Nagasawa, Yagi and Kawahara 2002).  More relevant for 

device manufacturing were studies performed using hot-wall CVD, which resulted in 

growth rates up to 50 m/h (Reyes, spring MRS 2006).  While these films were relatively 

flat (i.e., low residual stress) they were far from ‘defect free’ which is generally a 

minimum condition to allow for electronic devices to be successfully realized. 

 

1.2.1 Why Heteroepitaxial Silicon Carbide? 

 Unlike the more commonly studied hexagonal forms of SiC, 4H-SiC and 6H-SiC, 

3C-SiC has the ability to be heteroepitaxially grown on Si, allowing for the growth of SiC on 

large area substrates.  Si wafers are inexpensive and are currently manufactured as large as 12 

inches in diameter.  3C-SiC could be epitaxially grown on large-area Si wafers to produce 

seeds for bulk growth.  Currently, only bulk SiC is available in the 4H and 6H polytype with 

boule sizes capable of producing a maximum 4 inch size wafer at a cost of nearly $2000-

$2500 per wafer (Cree, Inc. 2009).  Furthermore, bulk SiC grown by physical vapor transport 

contains screw dislocation densities near 10-200 cm-2 that can penetrate into the epitaxial 

layer during growth and lead to device failure.  Because of the cubic crystal structure of 3C-

SiC, these screw dislocations are energetically unfavorable and do not in occur in 3C 

heteroepitaxy. 

 Heteroepitaxy opens opportunities for silicon carbide growth on a variety of novel 

substrates in order to exploit or suppress certain attributes.  In order to reduce the detrimental 

effects stemming from the coefficient of thermal expansion mismatch between SiC and Si, 
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3C-SiC has been grown on SixGe(1-x) substrates.  3C-SiC films have also been grown on 

silicon substrates patterned with inverted nanopyramids to successfully reduce defect 

propagation via defect annihilation within the films (D'Arrigo 2010), see Figure 1.2.  

Fabrication of devices, e.g. MEMS, can be facilitated by growing polycrystalline SiC on 

sacrificial oxide release layers by using a polysilicon seed layer.  The oxide layer can be 

etched with hydrofluoric acid (HF) to release the patterned SiC MEMS structures.  This 

avoids problems that silicon wet etchants may present when releasing SiC directly from a Si 

substrate- masking effects due to bubble formation on the substrate surface and the increased  

risk of structural damage due to agitation, especially with submicron thick films.  The 

polysilicon seed-layer can be tailored to impact the grain characteristics of the poly SiC film, 

resulting in a highly-textured poly-SiC film (C. L. Frewin 2009). Indeed, this preliminary 

work was the motivation for this dissertation research where the next logical step was to 

realize MEMS devices on the poly-SiC on oxide wafers. 

 

 
Figure 1.2  Schematic representation of antiphase domain boundary (APB) 
annihilation with film thickness.  The solid line represents the Si-SiC interface.  
Note that the APBs form at the atomic steps of the Si surface. (Mendez, et al. 
2005) 
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1.2.2 Fabrication of Silicon Carbide MEMS 

 Although the micromachining of single-crystal bulk silicon carbide, i.e. 4H-SiC 

and 6H-SiC, has been demonstrated using SiC-epi on SiC bulk substrates to produce 

pressure sensors (Okojie 1996), heteroepitaxial SiC has the advantage of being grown on 

relatively inexpensive, high quality, large area Si substrates and readily processed using 

many of the conventional Si bulk micromachining techniques.  The high etch resistance 

of silicon carbide to the wet chemistries used to process Si and SiO2 allows SiC to act as 

an etch stop during a broad range of processing steps.  Figure 1.3 shows a process flow 

demonstrating the realization of diaphragm and cantilever structures from epi-SiC on Si.  

In the case of the backside etch, the SiC membrane serves as an etch stop to provide 

excellent thickness control of the membrane.  Freestanding SiC microstructures, like the 

cantilever shown in Figure 1.3, are first patterned using dry etching (plasma) and then the 

structure is released by etching the bulk silicon with an anisotropic wet etchant, e.g. 

KOH, TMAH, or EDP. 

 As previously mentioned, wet etching isn’t practical to use to pattern silicon 

carbide, so plasma etching techniques have been developed.  The fluorine-based plasma 

chemistries developed for the etching of Si, SiO2, and Si3N4 are also used for SiC.  SF6, 

NF3, CHF3, and CF4 are commonly mixed with O2 at pressures below 200 mTorr to 

promote reactive ion etching and suppress sputtering of the substrate (M. Z. Mehregany 

1998).  Although, the oxygenated plasmas quickly erode common photoresist masks, 

photoresists, such as AZ® 4620 manufactured by AZ Electronic Materials, are available 

that are resistant enough against erosion in fluorine-based plasmas to serve as a dry etch 

soft mask.  Photoresist masks can exhibit etching selectivity up to 1:1, which is fine for 
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patterning larger feature sizes (≥ 4µm) or processing thin SiC films. However, aluminum 

or nickel hard masks are preferred for patterning SiC in etching plasmas since only thin 

metal coatings are needed owing to the high selectivity of the metal films (1:40 for Ni on 

3C-SiC).  Nevertheless, aluminum hard masks are prone to an effect called 

micromasking, a phenomena that occurs when sputtered atoms from the metal mask 

deposit on the surrounding etch field and masks the undying material of the etch field.  

Grass-like structures result if the etching environment has a high-degree of anisotropy.  

The addition of small amounts of hydrogen to the gas mixture reduces this effect (M. Z. 

Mehregany 1998). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 1.3  Fabrication of a free-standing cantilever.  (a) CVD growth of 3C-
SiC film on a Si substrate.  (b) Mask material (shown in orange) is spun 
(photoresist) or deposited (metal) on the wafer and then patterned.  (c) The 3C-
SiC is dry etched using SF6/ O2 plasma.  (d) Mask layer is removed.  (e) 
Structure is released by etching the underlying silicon with a heated 20% KOH 
solution. 
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 Surface micromachining is a process in which sacrificial thin films are used as a 

platform for the deposition of a structural layer, but are then removed to release a 

freestanding MEMS structure.  Silicon bulk micromachining techniques can be used for 

processing monocrystalline, polycrystalline, and amorphous SiC, however, conventional 

surface micromachining is currently only possible with poly and amorphous SiC.  

Polycrystalline SiC structural layers can be deposited on a poly-Si or SiO2 sacrificial 

layer to exploit the fact that SiC is highly resistant to Si and SiO2 etchants.  When poly-Si 

is used as a sacrificial layer, a thin oxide layer is used to protect the underlying Si 

substrate during the release of the structure from the sacrificial layer.  Poly-SiC grown on 

SiO2 and Si3N4 films tend to form randomly-oriented, equiaxed grains.  In contrast, the 

crystal grains of the poly-SiC film grown on poly-Si matches the textured grains of poly-

Si, forming a polycrystalline epitaxy (Zorman 1996).  This suggests that one could vary 

the microstructure of the SiC film to tailor the device’s performance by selecting the 

appropriate poly-Si substrate deposition conditions.  The work discussed in this 

dissertation explores the influence of thickness-dependant microstructure changes (i.e. 

grain size and grain texture) of thin polysilicon films on the SiC film.   

 

1.2.3 Stress-Induced Deformation of Heteroepitaxial Films 

 As discussed earlier, heteroepitaxial SiC offers several benefits over bulk-grown 

SiC since heteroepitaxial SiC can be incorporated into current silicon processing 

technology and a variety of substrates can be implemented to suit design/ fabrication 

needs.  Unfortunately, the heteroepitaxial growth of 3C-SiC on Si is exacerbated by a 20% 

lattice mismatch and 8% coefficient of thermal expansion (CTE) between Si and 3C-SiC 



www.manaraa.com

12 

(refer to Table 1.1), which leads to in-plane stress within the film.  The stress that develops 

within the SiC film near the SiC-Si interface is tensile, resulting in concave bowing of the 

wafer or, in the case of growth on (111)Si substrates, film delamination and cracking.  Often 

the atomic bonds along crystal planes will break and reform to relieve film stress, leaving 

behind dangling bonds which are referred to as misfit dislocations (Smith 1995).  At the edge 

of the wafer or areas where the film-substrate system terminate, deformation of the film edge 

will occur due to the film being “pinned” at the film-substrate interface, refer to Figure 

1.3(a).  This deformation will cause out-of-plane bending of free-standing structures  As the 

film grows, a stress gradient parallel to the direction of growth frequently develops within 

3C-SiC films, causing out-of-plane deformation of released structures, Figure 1.3(b).  These 

material growth-related issues need to be addressed before 3C-SiC can be realistically 

considered as a replacement for Si-based MEMS device structures. 

 

1.3 Polysilicon-on-Oxide Substrates for Heteroepitaxial Silicon Carbide 

 SiC is a semiconductor material that is desirable for many power electronics and 

MEMS applications due to its wide band gap, mechanical resilience, robust thermal 

properties, and chemical inertness.  However, many of these inherent properties create 

extreme difficulties when processing MEMS devices with this material.  SiC chemical 

resistance reduces the effectiveness of wet chemical etching and requires the use of dry 

etching techniques involving reactive ion etching (i.e., DRIE/RIE).  Fortunately, 3C-SiC, 

can be grown heteroepitaxially on Si substrates, and the addition of this Si layer allows 

for many more processing options in device manufacturing.  For example, one can utilize 

the Si substrate as a sacrificial layer for the creation of freestanding 3C-SiC MEMS 

structures (Beheim and Evans 2006) (Carter, et al. 2000).  However, the recipes used to 
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etch Si in DRIE/RIE have a similar etch rate with SiC, thereby excluding selectivity and 

reducing accuracy for the desired structure (Beheim and Evans 2006) (McLane and 

Flemish 1996) (Rosli, Aziz and Hamid 2006).  Freestanding SiC MEMS devices using 

sacrificial Si layers have also encountered difficulties during device fabrication resulting 

from unetched Si preventing the complete release of the structure (Beheim and Evans 

2006) (Carter, et al. 2000).  Silicon dioxide, SiO2, has been traditionally used as an etch-

stop in Si processing involving DRIE/RIE, and can be easily removed by wet chemistry 

processes to allow for the full release of freestanding structures (Federico, et al. 2003).  

With this in mind, silicon-on-insulator, SOI, substrates provide an excellent media for the 

creation of freestanding SiC devices by providing not only an oxide for the etch-stop for 

DRIE/RIE, but also a Si crystal seed layer for the heteroepitaxial growth of the 3C-SiC 

(Shimizu, Ishikawa and Shibata 2000) (Myers, Saddow, et al. 2004). 

 SOI provides some additional benefits for the growth of 3C-SiC as shown in 

previous studies (Shimizu, Ishikawa and Shibata 2000) (Myers, Saddow, et al. 2004).  

The high temperatures required for the growth of single-crystal 3C-SiC soften the SiO2 

layer, allow dispersion of stress caused by the ~20% lattice mismatch between SiC and 

Si, and suppress the formation of voids caused by Si evaporation at the 3C-SiC/ Si 

interface (Carter, et al. 2000).  Although thick SOI seed layers (>50 nm) have been 

shown to produce 3C-SiC films that are of comparable quality when compared to 3C-SiC 

films grown on single-crystal Si substrates, the benefits of the epitaxial growth of 3C-SiC 

on SOI are realized when 3C-SiC is deposited on a thin (<50 nm) seed layer of Si, which 

produces excellent quality 3C-SiC (Shimizu, Ishikawa and Shibata 2000) (Myers, 

Saddow, et al. 2004).  However, a major drawback of using SOI in the production of 3C-
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SiC devices is the fact that it requires extensive processing techniques (Shimizu, 

Ishikawa and Shibata 2000) (Myers, Saddow, et al. 2004).  These processes add to the 

overall production cost of the device.  In addition many MEMS devices do not require 

single-crystal SiC material for proper functionality.  A cost-efficient, easily produced 

wafer stack consisting of poly-Si/ SiO2/ Si layers could replace the SOI substrate if poly-

SiC is desired as a material for MEMS applications. 

 The SiC Group at the University of South Florida has been investigating the 

optimization of the new process of growing thin-film 3C-SiC on a thin (≤ 100nm) 

polycrystalline Si (poly-Si) seed layer. The poly-Si is CVD-deposited on a CVD-

deposited SiO2/ Si (111) stack and poly-3C-SiC is formed on this poly-Si seed layer.  The 

CVD deposited poly-Si seed layer appears to exhibit a highly-textured grain structure, in 

other words, the polycrystalline grains are oriented in a preferred direction.  The texturing 

of the poly-Si layer is very sensitive to its deposition temperature.  It is reported that the 

films are deposited favoring the <110> orientation and, once annealed, tend to arrange in 

the <111> orientation (Parr and Gardiner 2001). Growing the 3C-SiC via the poly-Si seed 

layer on an oxide release layer will provide a versatile substrate for the fabrication of 

free-standing, highly-crystalline 3C-SiC MEMS structures with low residual stress. 

 

1.4 Influence of Polysilicon Seed-Layer Thickness on Silicon Carbide Film Stress 

 The behavior of polycrystalline films is largely determined by the grain 

morphology and the general orientation of the crystallites within the film (i.e., film 

texture).  Smaller grain size, especially when they exhibit columnar structure, usually 

results in a higher concentration of small angle grain boundaries.  These boundaries tend 
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to be areas of lower density and the interatomic forces within the boundary try to close 

the gaps, which results in a tensile stress on the surrounding crystallites (Koch 1994).  

Polysilicon films deposited at temperatures ≥ 610°C form a conical grain structure and 

exhibit compressive stress (Parr and Gardiner 2001).  The origin of the compressive 

stress is not well understood, but is believed to be a result of hydrogen incorporation into 

the growing film (Yu et. al) or the insertion of excess adatoms into the grain boundaries 

(citation).  Early in the deposition small, randomly oriented grains grow and compete 

with one another depending on their orientation with respect to the growing film.  

Crystallites oriented for fast vertical growth will out-compete slower growing 

misoriented grains.  This results in fewer, but larger, conically shaped grains as the film 

grows (see Figure 1.5).  Compressive polysilicon films tend to exhibit positive stress 

gradients and, as a result, curl upward when released from the substrate (Madou 2002). 

 Silicon carbide films were grown on polysilicon seed layers deposited under 

conditions which favor cone-shaped grain growth and compressive intrinsic stress.  

Cantilevers fabricated from 3C-SiC films grown on a ~20nm thick polysilicon layer 

demonstrated a positive gradient stress, i.e. upward curl, whereas cantilevers fabricated 

from 3C-SiC films grown from a ~100nm polysilicon seed-layer developed a negative 

gradient stress, i.e. downward curl.  Surface probe analysis of the polysilicon layers 

revealed substantial size and morphology differences of the surface structure of the gains.  

Transmission electron microscopy (TEM) of the 3C-SiC film grown on the 100nm thick 

polysilicon seed-layer showed relatively well-ordered grains near the SiC-Si interface 

with increasing randomness of the grain orientations away from the interface. 
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1.5 Overview of the Organization of This Dissertation 

 SiC demonstrates roboust electrical, chemical, and mechanical performance 

suitable for use in harsh environments where Si-based MEMS devices would fail.  

Unfortunately, the chemical inertness is a desirable property for device application; it 

presents challenges for the processing of heteroepitaxial SiC films.  Coupled with the 

inherent problems of heteroepitaxial growth, new techniques to reduce or eliminate these 

issues must be investigated if SiC is to be realized as the preferred fabrication material 

for harsh environment devices.  Chapter 2 will discuss the principles of CVD growth and 

hardware, since chemical vapor deposition is the primary means of growing 3C-SiC.  An 

overview of crystal defects and polycrystalline film growth as they apply to 

heteroepitaxial growth of 3C-SiC on Si will be then be presented.  The chapter will 

conclude with a mechanical analysis of thin film stress.  Chapter 3 will discuss the first 

experiments to realize high-quality poly-3C-SiC films on poly-Si on oxide wafers.  

Chapter 4 presents the first experiments aimed at producing MEMS structures on the 

poly-3C-SiC on oxide layers developed and presented in Chapter 3. Based on the lessons 

learned in this phase of the research the MEMS structures were re-designed so that stress-

strain information could be extracted directly from the released MEMS structures.  

Finally, Chapter 5 will discuss future research exploring post fabrication annealing of 

MEMS structures micromachined from the stoichiometry-dependent bilayer film and 

further characterization of the microstructure of the polycrystalline SiC films. 
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CHAPTER 2: HETEROEPITAXIAL SILICON CARBIDE STRUCTURE, 

GROWTH, AND THIN FILM MECHANICS 

 

2.1 Crystal Structure of Silicon Carbide 

 Silicon carbide can exist in many different crystal structures depending on growth 

conditions, a phenomenon called polytypism.  Polytypism is a special case of 

polymorphism, in which the crystal structures between two polymorphs differ only in the 

way identical, two-dimensional layers of close-packed layers are stacked.  In the case of 

SiC, polytypes vary by the different stacking sequences of the tetragonally-bonded Si-C 

subunits, with more than 220 polytypes known to exist (Foll 2006).  However, an 

overwhelming majority of electronic materials research is concerned with only three of 

these polytypes: 4H-SiC, 6H-SiC, and 3C-SiC.  The 4H, 6H, and 3C designation, called 

the Ramsdell notation, is the most wide-spread method of identifying polytypes (Foll 

2006).  The number-letter prefix designates the quantity of close-packed Si-C layers 

required for each unit cell and whether the polytype is a hexagonal (H), cubic (C), or 

rhombohedral (R) crystal system.  For example, 4H-SiC indicates a hexagonal crystal 

system comprised of a repetitive, uniquely-ordered stacking sequence of four (4) Si-C 

subunit layers. 

 The hexagonal close-packed structure is a main reason for the high stability of the 

hexagonal SiC polytypes.  The 4H-SiC polytype has the highest stability due to the 
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alternating cubic and hexagonal layers (Park, et al. 1994). 6H-SiC has a low, anisotropic 

electron mobility, while 4H-SiC has a much higher electron mobility and is less 

anisotropic, i.e. less directionally dependent (Casady and Johnson 1996). Thus 4H-SiC is, 

at present, the most commonly used polytype for electronic devices (Saddow and 

Agarwal 2004). 

 

 

Figure 2.1  Four examples of SiC polytype stacking sequences.  Each point 
represents a lattice point on which the Si-C basis is attached.  Each layer is the 
close packed plane of the crystal system and is differentiated by “A”, “B”, or 
“C”, which is determined by the relation of each layer’s lattice point positions 
to the interstitial spaces of the other layers (Saddow and Agarwal 2004). 

 

 The ‘A’, ‘B’, and ‘C’ labels in Figure 2.1 denote the position of the lattice points, 

a collection of periodic points in space, on which the Si-C subunits are located.  As seen 

in Figure 2.1, 4H-SiC has a stacking sequence of ABCB, or 4 layers, therefore the 

designation is 4H.  This structure has an equal number of cubic and hexagonal lattice 

sites.  The 6H-SiC structure has 6 stacking layers before the sequence repeats ABCACB, 

and, finally, 3C-SiC is a continuation of the ABC stacking sequence which has purely 

cubic symmetry.  Due to differences in stacking sequence, the electrical, mechanical and 

optical properties vary for each polytype of SiC, as shown in Table 1.1. 
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2.2 Overview of CVD 

 Chemical vapor deposition (CVD) is a technique in which a solid film is formed 

onto a surface by a chemical reaction emanating from vapor phase precursors.  The 

chemical reactions generally undergo activation by ohmic heating, RF induction heating, 

plasma, or light.  It is a technique often employed for the uniform growth of high quality 

thin films.  The common types of CVD are 1) Organometallic Vapor Phase Epitaxy 

(OMVPE) 2) Plasma Enhanced Chemical Vapor Deposition (PECVD) 3) Photo CVD 4) 

Low Pressure CVD and 5) Atmospheric Pressure CVD.  Chemical vapor deposition 

involves a series of sequential steps beginning with the vapor phase and progressing 

through a series of quasi steady-state reactions which culminate in the development of a 

sold film.  The progression from vapor phase to film growth can be summarized by the 

following sequence of events.  First, the gaseous reactants diffuse through the stagnant 

fluid layer (i.e. so called ‘boundary layer’) to the growth surface.  Second, the reactants 

adsorb on the surface and then usually undergo some surface migration to reach a 

reaction site (i.e., dangling chemical bond).  Third, the reactants undergo a chemical 

reaction which may be catalyzed by the surface.  Fourth, the reaction by-products 

undergo desorption from the surface.  Fifth, the reaction by-products diffuse through the 

boundary layer, enter the gas stream and are exhausted out of the reactor.  Finally, the 

condensed product is incorporated into the structure of the developing film.  The process 

is summarized in Figure 2.2 below. 
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Figure 2.2  Schematic diagram of mechanistic steps which occur during the 
CVD process.  (1) Gas inlet, (2) dissociation of reactants, (3) diffusion of 
reactants to the surface, (4) adsorption of reactants to the surface, (5) 
heterogeneous surface reaction, (6) desorption of by-products, (7) diffusion of 
by-products back into the bulk gas (Park and Sudarshan 2001).  

 

 Although many rate-limiting steps are known to exist, the deposition rate of CVD 

processes is primarily governed by two mechanisms: mass transport and surface kinetics.  

These two rate-limiting steps are influenced by several process parameters.  The 

temperature and pressure of the reaction environment greatly impact the deposition 

process.  The pressure controls the thickness of the boundary layer and, as a result, 

affects the rate of the reactant and product diffusion (Sivaram 1995).  At low pressures, 

the boundary layer is thinner, which minimizes the diffusion time across the region.  This 

is known as the reaction-rate-limited CVD regime; where the rate of deposition is limited 

by the reaction rate of reactants on the surface and is more sensitive to temperature 

(Sivaram 1995).  If the temperature is low, then an oversupply of reactants is created due 

to the molecules reacting slowly (Sivaram 1995).  If the temperature is high, then the 

surface reactions take place quickly and the reaction rate is limited by the diffusion of 
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molecules.  This is generally the case for high pressures as the boundary layer is thicker 

and diffusion becomes the rate-limiting step.  The growth regime (transport-limited or 

surface reaction-limited) is determined by the slowest process (diffusion or chemical 

reaction) (Smith 1995).  Figure 2.3 illustrates how both the temperature and pressure 

during CVD affects the growth rate. 

 

 

Figure 2.3  Generalized process trend showing the dependence of process 
temperature and pressure on growth rate via CVD (Smith 1995). 

 

 Another important process parameter that influences reaction rate is gas velocity.  

The CVD process involves the transport of precursor gases through the use of a carrier 

gas, which is designed to flow in a laminar manner although occasionally some 

turbulence is present (Park and Sudarshan 2001).  When a fluid flows over a stationary 

surface, a thin layer of fluid immediately above the surface is stationary.  This is known 

as the boundary layer, as stated above, and is inversely proportional to the gas velocity 
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and directly proportional to the fluid viscosity and pressure.  In a horizontal CVD reactor 

design, the boundary layer increases along the direction of the carrier gas flow (as the 

temperature of the gas increases), which leads to an exponential decrease in the 

deposition rate.  Tilting the susceptor increases the gas velocity by continuously 

decreasing the cross-sectional area and thus reduces the thickness of the boundary layer 

along the flow direction (Rossi 1988).  Figure 2.4 illustrates these principles. 

 

(a) (b) 
Figure 2.4  Illustration of the boundary layer, δ, in a horizontal reactor with: (a) 
flat susceptor design, and (b) tilted susceptor design (Pierson 1999). 

 

2.2.1 Early Stages of CVD Film Growth 

 The initial stages of film growth are characterized by three major phenomena 

which occur independent of the type of film growth technique.  The material first 

condenses out of the vapor phase and nucleates on a substrate.  This condensation process 

begins with the reactant species impinging on the surface and bonding to the substrate 

atoms at the gas-substrate interface.  The probability that an impinging atom will be 

adsorbed onto the surface is related to a quantity called the sticking coefficient, which is 

the ratio of the amount of material condensed on the surface to the total amount of 

impinging atoms, Figure 2.1 (Sivaram, S 1995).  Once an atom is adsorbed onto the 

surface it must overcome a surface binding energy, Qdesorb, in order to leave the surface.  
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Given the vibrational frequency, ν, of the adsorbed atom, the length of time, τs, which an 

atom stays on the surface, is expressed by: 

 

 
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s        (2.1) 

 

When Qdesob is large in comparison to kT, the adsorbed atom will spend a long time on 

the surface, so the chance of the atom being incorporated on the surface is high (Sivaram, 

S 1995).  When the energy of the surface atoms is on the order of kT, then the adsorbed 

atom will have a high probability of being desorbed.  Once incorporated onto the surface, 

the condensed atoms or molecules tend to aggregate and form small clusters on the 

surface of the substrate, a process called nucleation.  These small clusters are in a 

constant free energy struggle between the releasing of free energy when forming a cluster 

and having to pay an energy cost when forming a surface interface between two distinct 

phases.  Small clusters are unstable if the energy released from the formation of its 

volume cannot sustain the creation of its surface.  Once the clusters have reached a 

critical size, any addition of molecules to the cluster releases energy instead of costing 

energy and nucleation growth can be sustained.  Then the randomly formed nucleation 

sites reach a saturation density and undergo island coalescence via the diffusion and 

continuing capture of adatoms.  This saturation point occurs when the internuclear 

distances are on the order of the mean surface diffusion length.  As the islands grow, they 

assimilate subcritical nuclei and coalesce with other islands, forming a connected 

network.  Eventually, the steady-state growth above the first layer occurs.  However, 
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CVD processes add an additional step to the film growth process; a chemical reaction 

among the surface-adsorbed reactants occurs at the gas-substrate interface.  Whereas 

simple condensation is always exothermic, a majority of CVD reactions are endothermic 

which means they must usually wait until they interact with the heated substrate.  

Another important feature of the CVD process that complicates this general growth 

sequence is that the intrinsic impurities, in the form of reaction products, need to be 

considered in the vicinity of the film growth (Sivaram, S 1995). 

 

2.3 Overview of Heteroepitaxial Defects 

 Given the nature of heteroepitaxy, i.e. growing a crystalline material on a 

different crystalline material (substrate), it is nearly impossible to generate a perfect, 

mono-crystalline film.  Other than the introduction of impurities from contamination, the 

common source of extrinsic crystal defects found in heteroepitaxy stems from a mismatch 

between the lattice constant and the coefficient of thermal expansion between the 

substrate and film.  These disparities create line defects, such as dislocations, or planar 

defects as is the case for micro-twins, stacking faults, and grain boundaries. 

 

2.3.1 Line Defects 

 Dislocations are linear defects resulting from the deviation of atoms from the 

lattice site positions of the crystalline structure.  The disruptions of the atomic 

arrangement associated with dislocations typically extend through the structure along a 

line.  Dislocations that commonly occur in heteroepitaxy are of the edge and misfit type. 
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 Edge dislocations can be thought of as a disturbance originating from the insertion 

or removal of a partial plane of atoms from the crystal structure.  The region at the end of 

the partial plane, where the atomic arrangement maximally deviates from the normal 

lattice sites, is called the dislocation line.  The surrounding region is the dislocation core, 

which is an area of large strain and dangling bonds that runs alongside the dislocation 

line.  The energy of propagation for an edge dislocation is much lower than the total bond 

energy of the atoms lying in the propagation plane.  This is explained by the fact that an 

edge dislocation proceeds through a crystal peristaltic fashion.  At any given moment, 

only one bond is broken while the atoms surrounding the dislocation are distorted from 

their equilibrium positions. 

 Another type of dislocation that is closely related to the edge dislocation, but is 

not seen in 3C-SiC heteroepitaxy, is the screw dislocation.  This dislocation is often 

thought of as a crystal system which has been subjected to shear stress sufficient enough 

to overcome the elastic limits of the crystal.  The result is the shifting of one side of the 

crystal relative to the other side by one or more lattice constants.  In this case, the 

dislocation line runs in the direction of the shift.  Referencing the atoms located within a 

plane perpendicular to the dislocation line, if an attempt is made to form a closed path 

around the dislocation line by connecting the atoms together, a helix will be formed.  The 

once parallel planes of the crystal are now joined by a helical path; this is why this type 

of dislocation is referred as a screw dislocation.  Although this dislocation is not seen in 

as-grown crystalline 3C-SiC films, its introduction is important for the understanding of 

grain boundaries. 
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 Heteroepitaxial dislocations, called misfit dislocations, form at the interface of 

two crystals with different lattice constants.  In an attempt to minimize the interatomic 

bonding strain induced by the lattice mismatch, the atomic planes of the thin film will be 

distorted at the interface and will no longer be equally spaced.  The roughly equidistant 

points along the interface where the lattice deviations are the greatest correspond to the 

misfit dislocations.  If the heteroepitaxial film has a coefficient of thermal expansion 

different than the substrate, then when temperature changes occur, usually during post-

growth cooling, misfit dislocations occur in order to relieve in-plane stress present near 

the film-substrate interface.   

 

2.3.2 Planar Defects 

 Planar defects correspond to disturbances of the crystal structure resulting from 

the two dimensional deviation of atoms from their corresponding lattice sites.  Planar 

defects commonly found in heteroepitaxial films are stacking faults (SF), microtwins, 

antiphase boundaries (APB), and double position boundaries (DPB). 

 Stacking faults occur when a mistake occurs in the stacking sequence of the 

planes of atoms along certain directions.  If planes of densely-packed spheres (atoms) are 

to be stacked on each other, one finds that there are two sets of interstitial spaces to place 

the next densely-packed plane.  As a result, it is possible to lay three planes in succession 

without the co-alignment of interplanar atoms.  In a perfect crystalline structure, a 

stacking sequence will eventually repeat in a periodic fashion.  The face-centered cubic 

(FCC) structure is created when the stacking sequence repeats as ABCABC…and the 

hexagonal close packed (HCP) structure is created from the sequence ABABAB…  In the 
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case of the zinc blende structure of 3C-SiC, it is not unusual to see stacking errors occur 

in the stacking of the {111} planes since the nearest-neighbor bonding is not affected by 

stacking faults.  In fact, the energy associated with stacking faults is very low when 

compared to other planar defects since the defect is only due to the nearest-neighbor 

arrangement and not disturbances of the crystal structure.  This mistake may arise during 

the film growth or when plastic deformation has occurred to the film. Figures 2.5 and 2.6 

show a plan-view and cross-sectional TEM micrograph of the stacking faults present in a 

3C-SiC film grown heteroepitaxially on (100)Si. 

 

 

 

Figure 2.5  Stacking faults revealed in a (100)3C-SiC film via PV-TEM. SF 
density estimated to be ~ 5x104 cm-1. Data provided by C. Bongiorno, IMM-
CNR, Catania, Italy. 
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Figure 2.6  Example of hetero defects in (100)3C-SiC from X-TEM. Note the 
defects along the (111) planes, also threading dislocations and stacking faults.  
Image courtesy C. Bongiorno, IMM-CNR, Catania, Italy. 

 

 Another type of planar defect resulting from the change of the planar stacking 

sequence is the micro-twin or, simply, twin.  The distinctive feature of a twin is that the 

planar arrangements on opposite sides of the stacking disruption are mirror images of 

each other.  For example, the stacking sequence ABCABCACBACBA…possesses a 

reflection about the A-plane located at the center of the palindrome.  In the diamond or 

zinc blende structure, twinning occurs mostly about the (111) plane.  Twinning causes a 

change in the crystal orientation.  For crystal growth along the <111> direction in the 

zinc blende structure, the orientation of the crystal planes in the twinned region are along 

the <111> or <115> direction.  A very smooth surface morphology can result in 3C-SiC 

heteroepitaxial growth along the <111> direction since the twinning plane is the same as 

the growth plane. Figure 2.7 (a) shows a schematic representation of a micro-twin while 

Figure 2.8 shows a plan-view TEM micrograph of an actual micro-twin present in a 3C-

SiC film grown on (100)Si. 
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Figure 2.7  Schematic representation of micro-twin defect in SiC on Si 
heteroepitaxy. (Mendez, et al. 2005) 

 

 

Figure 2.8  Micro-twinned crystal defect (dark cluster in center of micrograph) 
observed with plan-view TEM (PV-TEM). Data courtesy of C. Bongiorno, 
IMM-CNR, Catania, IT. 

 

 A planar defect that frequently occurs during the growth of (100)3C-SiC on 

(100)Si substrates is the antiphase boundary (APB).  This type of defect is prevalent 

during APCVD growth and is significantly reduced at lower growth pressures (Cho and 

Carter 2001).  The APB occurs when two islands having different ordered phase 
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coalesce.  In the early stages of the film growth, partial surface steps may cause a relative 

position shift between the atomic stacking of different islands.  In the case of SiC, due to 

surface roughness of the carbonized Si substrate, some islands of SiC may sit higher 

relative to others.  As the islands grow and coalesce, a Si or C layer of one island may 

bond with another Si or C atom of another island forming a Si-Si or C-C bond as 

illustrated in Figure 2.9.  These boundaries tend to propagate along the {111} planes 

(Ishida, Takahashi and Okumura 2003).  However, the etching experiments of Li and 

Giling have shown evidence that APBs can propagate along the {110} plane (Ishida, 

Takahashi and Okumura 2003). 

 

 

Figure 2.9  Geometrical consideration of the formation of an APB when SiC is 
grown on (100)Si substrate with an atomic step.  Note the bonding of Si-Si and 
C-C atoms. (Cho and Carter 2001) 

 

 The double position boundary (DPB) is a special case of twinning in which 

separate domains are rotated about a 180° twin axis. This is seen when a FCC type crystal 

structure is grown in the (111) orientation on a (111) surface of a hexagonal crystal 
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(Kong, et al. 1987).  This is commonly seen in 3C-SiC films grown on the basal plane of 

the hexagonal SiC polytypes.  As illustrated in Figure 2.10(a), the (111) surface has two 

equivalent types of sites that the C atoms can locate.  As a result, two different nuclei 

orientations can develop which are rotated 60° relative to each other.  When these nuclei 

coalesce into each other, a DPB is formed.  In Figure 2.10(b), the relative shift of the 

stacking sequence between neighboring domains is shown.  The upper case “A” 

represents the surface of the substrate, while the lower case “a b c…” represents the 

stacking layers of the epitaxy.  One can see that every third layer offers the opportunity to 

form a perfect bond across the interface, Si-C for example, the other planes cannot form 

this type of bond (Kong, et al. 1987).  As a result, the boundary is somewhat disordered 

and the internal energy is high (Kong, et al. 1987). 

 

 

Figure 2.10  Stacking fault generation schematic showing the error in crystal 
layer formation resulting in a stacking fault defect. (a) top view representation 
and (b) side view showing the plane stacking sequence (Kong, et al. 1987). 
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2.3.3 Grain Boundaries 

 Since this dissertation involves the growth and characterization of polycrystalline 

films, it is worth looking at the role grain boundaries play in polycrystalline systems.  

Polycrystalline materials consist of several small crystalline regions, called grains or 

crystallites, bonded together by crystallographically defective regions called grain 

boundaries.  Grain boundaries are interfaces where two crystals having different 

orientations meet without a disruption in the continuity of the material (Hirth 1968).  

Grain boundaries are generally categorized as low-angle grain boundaries and high-angle 

grain boundaries.  Low-angle grain boundaries can be viewed as being comprised of 

several distinct and isolated dislocations whose properties are directly dependent on the 

degree of misorientation, (≤ 10°).  An idealized, simplified case of creating a low-angle 

grain boundary is through a tilt and twist.boundary.   

In the case of a tilt boundary, the crystal lattice can be visualized as being bent by 

an applied force about an axis parallel to the boundary plane.  To reduce the energy 

associated by the bending, one can insert a wedge into the crystal.  Edge dislocations, 

which are an extra plane of atoms, act like an imaginary wedge.  As the bending angle is 

increased, more dislocations must be incorporated into the deformation in order to reduce 

the energy of the deformation.   

The twist boundary involves rotation about an axis perpendicular to the boundary 

plane.  In order to minimize the energy associated with the twist, two sets of 

perpendicular screw dislocations need to be introduced into a plane to create localized 

distortions.  Generally, grain boundaries are never a pure tilt or twist boundary, but a 

combination of the two.  When the angle of misorientation becomes large, the 
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dislocations become numerous and begin to overlap each other creating a very disordered 

boundary region. 

 

2.4 Structural Evolution of Polycrystalline Thin Films 

Grain formation in polycrystalline films grown using CVD processes is sensitive 

to several parameters such as temperature, deposition rate, dopant concentration, 

pressure, and impurity concentration.  The structures of polycrystalline systems usually 

are governed by complicated, materials-specific phenomena (Thompson 2000).  The 

processes described in this section are simple, generalized trends of behavior for 

materials.  Polycrystalline films typically begin with the nucleation and coalescence of 

individual crystal islands on a substrate, an overview of this process was discussed in 

section 2.2.1.  Grain growth is largely driven by the minimization of the excess energy 

associated with the total grain boundary area; as the grain boundary area decreases, the 

grain size must increase.  Grain structure formation can occur through two distinct 

evolutionary processes.  In one case, the grain boundaries formed early after island 

impingement are immobile and grain growth proceeds from the epitaxial growth of 

columnar structures.  As the film grows, the grains oriented with the faster growing facets 

favoring vertical film growth will out-compete slower growing, misoriented grains, 

Figure 2.11.  Sometimes this is referred to as conical grain growth. 
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Figure 2.11  Evolution of grain structure with film growth.  Cross-sectional 
slices of a simulated film at various thicknesses revealing grain evolution due to 
competitive grain growth among conical grains.  The film thickness, h, is 
expressed in terms of the initial grain spacing, d0.  (Ophus 2010) 

 

 When the grain boundaries are mobile, the in-plane grain growth proceeds as the 

film thickens.  The resulting grains appear to have an equiaxed, columnar shape that 

traverses the thickness of the film.  As the film grows, the in-plane grain size increases 

with roughly the same scale.  Often times, as unfavorable grain orientations are occluded 

due to competitive growth and the faster growing orientations drive film thickening, 

conical growth can lead to columnar grain growth with roughly parallel boundaries. 

 

2.5 Mechanical Properties of Thin Films 

 While many thin film devices may be sought after for their electronic, magnetic, 

or optical properties, these devices are often limited by their mechanical properties.  In 

the course of the deposition of thin films of materials, large stresses can develop, 

sometimes exceeding the tensile strength of the bulk material.  These intrinsic stresses are 

often held responsible for the failure of thin film devices; in extreme situations the film 

may crack or peel from the substrate from where they are grown.  From a technological 

point of view, it is important to understand the mechanisms responsible for thin-film 
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stress and develop methods to reduce or compensate for the impact these stresses have on 

thin-film bases devices. 

 

2.5.1 Sources of Stresses in Thin Films 

 This section will open with a few distinctions that need to be introduced between 

widely employed and, occasionally misused, terminology.  Stress, often denoted by the 

Greek letter, σ, is defined as the force, F, applied over a cross-sectional area, A, whose 

units are the same as pressure.  It is simply expressed as, 

 

 
A
Fσ            (2.2) 

 

Strain, denoted by the Greek letter, ε, is a measure of a change of length, ΔL, arising from 

the displacement of a particle in a body based on a reference length, L.  The length 

change may occur because of the application of an external or internal force, the 

expansion of a material from a temperature difference, etc.  It is frequently expressed as a 

ratio, 

 

 
L
LΔε           (2.3) 

By convention, σ> 0 and ε> 0 are tensile stress and strain and σ< 0 and ε< 0 are 

compressive stress and strain, respectively.  Residual stresses are those stresses that exist 

within a body when thermal gradients or externally applied loads have been removed.  
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Three sources of stress that can contribute to thin film’s residual stress are intrinsic, 

epitaxial, and thermal.   

 Intrinsic stress refers to the collective stresses that develop during the growth of 

the film.  It does not arise from the lattice mismatch or the thermal expansion-related 

strains of the film-substrate system, but occurs because of the film deposition process 

(e.g. nucleation, island coalescence, grain growth, film thickening, etc.), and develops 

under non-equilibrium conditions.   

 Epitaxial stress arises when a lattice parameter mismatch exists between the film 

and the substrate.  This occurs when the film is very thin and there is coherency between 

the lattice sites of the film and the substrate.  The misfit strain, εmf, by the distortion of 

the lattice spacing creates stress is given by 

 

 
 

s

fs
mf a

aa
ε


         (2.4) 

 

Where as and af are the substrate and film lattice constant, respectively. Once an epitaxial 

film reaches a critical thickness, tc, the lattice becomes sufficiently strained and it 

becomes energetically favorable to form misfit dislocations in the film at the interface.  

The misfit dislocations introduce a stress field into the immediate area which relaxes the 

stressed interface.  In the case of 3C-SiC, once the film grows past the critical thickness, 

5 SiC lattice cells slightly exceed the distance spanned by 4 Si cells (i.e., 20% lattice 

mismatch).  Sometimes epitaxial stress is lumped with other growth-related stresses as a 
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source of intrinsic stress but there is this fine distinction which is important to understand 

in order to try and reduce/eliminate. 

 Thermal stress is generated when strain is created from the material-dependent 

differential expansion between the film and substrate during a temperature change.  This 

is often referred to as the Coefficient of Thermal Expansion (CTE). When the tf << ts, the 

stress is related to the strain in the film at a certain temperature, T, by: 

 

      TTαα
ν1

E
σ depsf

f

f
therm 










      (2.5) 

 

Where Ef is the Young’s modulus of the film, νf is Poisson’s ratio of the film, αf and αs 

are the thermal expansion coefficients of the film and substrate, respectively and Tdep is 

the deposition temperature.  In the case of SiC heteroepitaxy, the film is grown at 

temperatures usually exceeding 1300°C and then cooled to room temperature.  The strain 

difference between the Si substrate and the 3C-SiC film due to this temperature-

dependent contraction is nearly 8% and always results in a tensile (ε>0) thermoelastic 

strain in the 3C-SiC film. 

 

2.5.2 Stress Control of Polycrystalline Silicon Carbide Films via CVD Process 

Parameters  

 It has been known since the early 1980’s that Si-rich silicon nitride, Si3N4, thin 

films experienced stress relaxation when compared to fully stoichiometric Si3N4 

(Habermehl 1998).  By varying the ratio of dichlorosilane, SiCl2H2, to ammonia, NH3, 
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the residual film stress can be tailored from a high state of tension to one of compression 

for Si-rich films (Witczak 1994).  Habermehl, reported that films with a silicon volume 

fraction of 10%-15% exhibited the lowest residual stress.  A similar approach was 

adopted to control the residual stress and strain gradient of poly-SiC films deposited by 

regulating the fraction of dichlorosilane (DCS) relative to the total gas flow when using a 

DCS and 1, 3-disilabutane (DSB) precursor chemistry (Roper 2006).  The reported 

growth rate for all films varied between 0.23µm/h- 0.32µm/h, generally increasing with 

the increase of DCS introduced into the gas flow.  The Si:C ratio increased with the DCS 

flow fraction.  The measured residual film stress and strain gradient decreased 

monotonically with increasing DCS fraction, see Figure 2.12(a) and 2.12(b) (Roper 

2006).  The stress reduction was attributed to the larger atomic radius of Si compared to 

C.  The excess Si in the film increased the average bond length thus reducing the tensile 

stress. 

 

 
 

(a) (b) 

Figure 2.12 Relationship of the DCS fraction in the gas mixture to, (a) the 
residual film stress and, (b) the strain gradient (Roper 2006). 
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 Results from the study of the average residual stress of poly-SiC films grown on 

(100)Si substrates (with and without SiO2 thin film passivation) as a function of DCS 

flow were in agreement with the findings reported by Roper et al. (X. A. Fu 2009).  The 

average residual stress and the strain gradient decreased in unison with increasing DCS 

flow fraction, both having coinciding minima at a DCS flow rate of 35 standard cubic 

centimeters per minute (sccm), see Figure  2.13.  The increased presence of DCS in the 

gas mixture also increased the growth rate from 30Ǻ/ min to 80 Ǻ/ min.  The inverse 

relationship between residual stress and growth rate has also seen in investigations 

studying the residual stress in poly-SiC films as a function of deposition pressure.  These 

poly-SiC films exhibited a strong-texture in the <111> direction per XRD θ-2θ analysis. 

  

(a) (b) 

Figure 2.13  Results using DCS to control residual stress in poly SiC films.  
Influence of DCS flow rate on (a) the average residual film stress and, (b) the 
strain gradient measured from cantilevers fabricated from poly-SiC films (X. A. 
Fu 2009). 

 

 Polycrystalline SiC films grown on 100 nm thick polysilicon sacrificial layers 

deposited on thin Si3N4 exhibited a high degree of (111)3C-SiC texture and uniformity at 

the poly 3C-SiC/ poly-Si interface when a self-limiting carbonization step was 

incorporated in the deposition process.  In contrast, poly-SiC films grown without the use 
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of a cabonization step exhibited voids at the poly-SiC/ poly Si interface, formed 

randomly oriented grains, had higher surface roughness and completely penetrated the 

unconverted polysilicon layer (Wiser 2003).  Similar results were reported using thin 

polysilicon layers deposited on oxide to grow poly 3C-SiC that is highly textured in the 

<111> direction (Frewin 2009).  The incoroporation of a cabonization step in the SiC 

deposition process allows the formation of a thin, usually <50nm thick, SiC layer that 

prevents the evaporation of Si at the higher temperatures used for 3C-SiC growth.  

Experimental evidence strongly suggests that the evaporation of Si is responsible for 

interfacial void and channel formation (S. E. Saddow 1999) .  Poly-SiC will form on 

polysilicon via three-dimensional island growth using not only the Si from the source gas, 

but also from the underlying polysilicon as a result of thermally stimulated outdiffusion 

of Si and H2 etching during the early stages of SiC growth (Wiser 2003).  When two 

islands coalesce, vertical Si migration from the polysilicon layer may contribute to 

sizable cavity and void formation, structures that may contribute to intrinsic tensile stress 

within the SiC film. 

 Deposition pressure has been shown to have an impact on the residual stress and 

stress gradients in poly-SiC grown on (100)Si substrates (Fu 2004).  The residual stress 

shifted from 710 MPa (tensile) to -98MPa (compressive) as the growth pressure was 

increased from 0.46 Torr to 5 Torr when grown using a SiH2Cl2 and C2H2 chemistry at 

900°C, Figure 2.14(a).  It was reported that cantilevers fabricated from the moderately 

tensile films exhibited a nearly-straight profile once released from the Si substrate, 

whereas the cantilevers fabricated from the compressive poly-SiC films bent upward.  All 

the films exhibited columnar grain structure with strong (111)3C-SiC texture.  However, 
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the films having high tensile stress contained a large number of high-angle grain 

boundaries with respect to the surface normal.  In contrast, the microstructure of the 

compressive films exhibited columnar grain structure in which the boundaries were 

dominantly parallel to the surface normal. 

 Liu et al. used a methylsilane, SiH3CH3, and DCS precursor chemistry to grow 

poly-SiC on (100)Si substrates at 800°C to study the impact of deposition pressure on the 

residual film stress (Liu 2009).  In contrast to the results reported by Fu, increasing the 

deposition pressure resulted in an increasing tensile film stress trend, Figure 2.14(b).  

Atomic force microscopy (AFM) revealed that the surface-projected grain size for the 

lower pressure growth was nearly twice the size of the higher pressure growth.  The 

surface morphology certainly suggests that the increase of residal stress with respect to 

the deposition pressure may be due to grain boundary effects (Liu 2009).  However, 

increasing the DCS flow fraction in the gas mixture also produced a decreasing tensile 

residual stress trend as reported by Roper et al.  With increasing DCS fraction, the strain 

gradient changed from negative to positive, with the transition region coinciding with the 

minimum tensile residual stress. 
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(a) (b) 

Figure 2.14  Residual stress versus deposition pressure trends for poly-SiC (Fu 
2004) (Liu 2009).  

 

 The effect of deposition temperature on the residual stress was also investigated 

by Liu et al. using methlysilane as a single precursor source for poly-SiC growth on 

(100)Si substrates.  Their results indicated a monotonic residual stress decrease from 1.4 

GPa to 450 MPa as the growth temperature was increased from 700°C to 800°C at 170 

mTorr, see Figure 2.15.  The suggested growth rate plateau from 800°C to 850°C seems 

to imply that there is a transition from the surface kinetics limited regime (where the 

growth rate increased with temperature) to the transport limited regime (where the growth 

rate plateaued) (Liu 2009).  XRD analysis of the resulting films exhibited several 

reflection peaks that implied the film grown at the lower temperature had a more 

randomly oriented grain structure than the films grown at the higher deposition 

temperatures. 
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Figure 2.15  Poly-SiC residual film stress and growth rate vs. temperature at 
0.17 Torr deposition pressure.  Note the plateau after 800°C, which suggests 
that a surface kinetics-limited regime transitioning to a mass transport-limited 
regime (Liu 2009). 

 

 It has also been reported that poly-SiC films grown on oxidized (100)Si substrates 

exhibited residual stress that increased with deposition temperature using a 

tetramethylsilane, THS, single precursor source (Hurtos 2000).  However, X-TEM 

analysis of the film-substrate revealed that the film grown at the lower temperature 

(1080°C) had a clearly-defined, intact oxide layer on which the columnar, (111) textured 

poly-SiC grew.  The higher temperature deposition (1130°C) had no apparent oxide layer 

remaining and the poly-SiC film exhibited randomly-oriented, equiaxed crystallites.  The 

deposition procedure incorporated high H2 flow to avoid excess carbon in the films and 

was responsible for H2-etching of the SiO2 prior to growth.  At 1080°C, the H2 etching 

was not significant enough to remove the SiO2 layer.  However, at 1130°C the 

incomplete, or insufficient, removal of the oxide layer at the slightly higher deposition 

temperature appeared to have triggered the small grain size (Hurtos 2000). 
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 An interesting approach to control strain gradients in poly-SiC thin films adopts a 

bi-layer structure using tailored N2 doping during poly-SiC growth was investigated by 

Zhang et al.  The technique is similar to the Multipoly process (J. H. Yang 2000), a 

process that has been used to create near-zero average film stress and near-zero stress 

gradients in poly-Si thin films.  Alternate layers of compressive and tensile films are 

deposited by varying the deposition temperatures. (J. H. Yang 2000).  However, since the 

Multipoly process is composed of stacks of partially amorphous and fully crystalline 

layers, long term stability issues may arise due to recrystallization (Zhang 2006).  The 

DSB single prescursor is used as the Si and C source and ammonia, NH3, is the doping 

source while all growths were carried out at 800°C.  Uniform doping of the full film 

thickness was performed for varying NH3 to DSB flow ratio from 0 to 5%.  All films 

exhibited negative strain gradients (downward deflection) while the average film strain 

was tensile and increased from 0.10% to 0.21% when the NH3/ DSB ratio was increased, 

Figure 2.16.  N atoms occupy the C sites in the SiC lattice which causes the crystalline 

lattice to contract from 4.360 to 4.345Ǻ, increasing the lattice mismatch between SiC and 

Si (J. H. Zhang 2006). 
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(a) (b) 

Figure 2.16  The use of tailored N2 doping during poly-SiC deposition to 
control film strain.  (a) Relationship between average film strain and dopant 
concentration.  (b)  Strain gradient of a 3µm thick bilayer consisting of a 5% 
doped top layer and 3% doped bottom later as a function of the ratio between 
top layer thickness to the total thickness (Zhang 2006). 

 

2.5.3 Analysis of Thin Film Stress 

 There are two principle methods that can be employed to assess the residual stress 

in thin films. The first is to measure the deformation of the substrate/film system using 

such means as a profilometer and then estimating the stress based on the radius of 

curvature. This is a ‘as grown’ technique that is frequently employed since it is not 

destructive and further film processing may be employed. The use of micro-raman 

spectroscopy which measures shifts in the transverse optical (TO) and longitudinal 

optical (LO) peaks can also be employed to determine film stress. In addition x-ray 

diffraction, in the so-called XRR (x-ray reflection) mode is often employed. However all 

of these microanalytical methods have limitations on their sensitivity and, ultimately one 

would like to assess the true mechanical properties of the stress in the film. This is 

particularly true for MEMS applications. 
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 The second method to assess the residual stress in the thin film is to fabricate 

MEMS test structures and then carefully monitor the deformation/movement of these test 

structures as a function of film deposition properties. Clearly this second method is much 

more relevant to MEMS applications as one can have a true understanding of the actual 

film stress. However, this method is very time consuming and destructive. As a 

consequence the normal approach is to employ microanalytical methods first, track the 

stress level as a function of deposition conditions, and then use MEMS test structures to 

reveal the actual film stress. In this dissertation research this was the methodology 

employed, which is now discussed in further detail. 

 

2.5.3.1 Stoney Equation 

 The establishment of a mathematical relationship between the residual stress 

present in the film-substrate system and the stress-dependent displacement of the film-

substrate system, i.e. the Stoney Equation, is the goal of this section.  Later, the 

relationship between the deflection of free-standing structures sensitive to uniform and 

gradient intrinsic stresses present in the film will be analyzed.  Appendix A provides a 

brief introduction for those not familiar with the following derivation.  It reviews the 

notation used in the following derivation and the mechanical analysis of a biaxially-

deformed plate, the model that is the basis of the Stoney Equation derivation. 

 A stress-free film with a thickness, tf, is bonded to a stress-free substrate with 

thickness, ts, such that ts>> tf.  The lateral dimensions of the film and substrate, L, is such 

that L>> ts and tf.  Figure 2.20 illustrates a series of steps depicting a way of creating a 

stressed thin film from a stress-free film-substrate system.  First, it is imagined that the 
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stress-free film is removed from the stress free substrate and allowed to deform 

unrestrained by the substrate, Figure 2.17(a).  Film stresses are caused by an elastic 

accommodation of an incompatibility between the film and substrate (Nix 2005).  

Second, after the film has deformed, external forces are applied to the film in order to 

deform the film in order to match the substrate, Figure 2.17(b).  The film is bonded to the 

substrate and the externally applied forces are removed.  The substrate will prevent the 

film from returning to its undeformed state, but the forces from the film will cause the 

substrate to deform, Figure 2.17(c).  Both the film and substrate will bow biaxially and 

distort near their edges (not shown). 

 

 

(a) 

 
(b) 

 
(c) 

Figure 2.17  The generation of biaxially deformed film-substrate system from, (a) an 
initially stress-free system.  (b) Application of an imaginary external force to the film in 
order to match the substrate width.  The deformed film is attached to the substrate and 
exerts a stress on the substrate.  (c) The biaxially stressed film-substrate system bows in 
response (Nix 2005). 
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The stress in the film is assumed to be isotropic and biaxial.  Therefore, 

 

fzzxx σσσ          (2.6) 

 

where XX, ZZ and f are the stress tensors in the x-plane, z-plane and biaxial film stress, 

respectively. The force longitudinally applied to the film is expressed as force per unit 

length, F.  Since the cross-sectional area of the film can be thought of in terms of film 

thickness, tf, multiplied by length, L, F can be expressed as: 

 

 F = ff tσ           (2.7) 

 

The bending moment, M, generated by F applied at the maximum moment arm distance 

from the neutral axis, ts/ 2, is expressed by: 

 

 M =
2
ttσ s

ff          (2.8) 

 

Substituting this bending moment into the mathematical expression derived from the 

mechanical analysis of a biaxially deformed plate (see Appendix A) which relates the 

plate curvature and bending moment, is given by : 
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Rearranging equation 2.9, the film stress, σf, is: 
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This is the well known Stoney Relationship.  From this expression, one can measure the 

curvature of the wafer and extract the stress present in the attached film.  Notice that the 

results only depend on the elastic properties of the substrate and the dimensions of the 

film and the substrate.  It does not depend on the properties of the film.  It is important to 

note that the stress determined by the measurement of the wafer curvature is different 

than the stress determined from structures fabricated from the film and released from the 

substrate.  Wafer curvature measurements allow for the determination of global 

constrained stresses, i.e. stress in the wafer before it bends.  Micromachined structures 

that are released from the curved wafers allow for the determination of residual stress, or 

stresses present after the wafer bending.  These residual stresses are attributed to the 

microstructure, defects, and inhomogeneities present in the film and are therefore much 

more relevant to films used in MEMS applications. 
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2.5.3.2 Cantilever Deflection 

 Beams are the most widely used structural component in MEMS sensors and 

actuators.  They require relatively few processing steps to fabricate and the mechanical 

principles which govern them are well-defined, which makes the mapping of the 

measureable data into the final result more dependable.  One type of beam structure, the 

cantilever, is well suited to detect gradient stresses in the film.  Gradient stresses are 

manifested as out-of-plane bends, which can be measured and quantified using beam 

mechanics.  Cantilevers are simple to fabricate and small enough to incorporate onto a 

device die for the purpose stress management.  This section will discuss some basic 

mechanical properties of a microfabricated cantilever while deriving an expression 

relating the gradient stress to the curvature of the cantilever. 

 

 

Figure 2.18  Illustration of a cantilever structure with length, “L”, width,” b”, 
and thickness, “h”.  The coordinate axis is located so the x-z plane coincides 
with the neutral plane of the cantilever beam (Nix 2005). 

 

 A general residual stress in the plane of a thin film can be envisioned as a 

superposition of various stress fields represented by the following polynomial series: 
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where, h, is the thickness of the cantilever and y is the ordinate of a coordinate system 

whose x-z plane is located at the neutral plane (midpoint) of the cantilever, see Figure 

2.18.  The first term of the polynomial, σ0, is the stress contribution from a uniform, 

constant stress in the film that is symmetric about the neutral axis.  The second term, 

σ1(y/(h/2)), which arises from the gradient stress, is anti-symmetric about the neutral axis 

and makes a linear contribution to the total stress field, see Figure 2.19.  Ignoring the 

higher terms of the polynomial series, the total stress can be expressed approximately as: 
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When the cantilever structure is released from the substrate, the film-substrate adhesion is 

removed and the freed structure can deform to relieve its internal stress.  The stress field 

prior to release is shown in Figure 2.19(a).  After release, the unrestrained end of the 

cantilever changes length, ΔL, to relieve the uniform stress, σ0, and the cantilever curls to 

relieve the gradient stress, shown in Figure 2.19(b) and (c).  This is an idealized scenario 

in which the higher order terms of equation 2.11 are assumed to be negligible.  In fact, 

the higher order terms may make significant contributions, as may be the case in 
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heteroepitaxial films or polycrystalline films where the defect concentrations or grain 

sizes may vary non-linearly through the film. 

 

   

 

(a) (b) (c) 

Figure 2.19  Stress states present in a thin film cantilever far from the anchor 
point. (a) The superposition of a uniform constant stress and stress gradient 
present in the cantilever prior to release from the substrate.  (b) After release 
from the substrate, the constant stress is relaxed via length change of the free-
standing cantilever.  (c)  The stress gradient is relaxed once the cantilever curls 
out-of-plane. (Fang 1996). 

 

 The bending moment present in the cantilever, with width, b, is calculated using 

the gradient stress term in equation 2.12: 
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The variable, y, is a point between the neutral axis and the edge of the beam along 

the y-axis, i.e. the moment arm.  Using the above bending moment and the area moment 
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of inertia of a rectangle, I = (1/12)*b*h3, the gradient stress, σ1 can be expressed as a 

function of the radius of curvature, R: 
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Since the bending is biaxial, E = Ef/ (1-νf), where Ef and νf are the elastic modulus and 

the Poisson’s ratio of the film, respectively. 

 

2.5.3.3 Planar Rotating Beam 

 Far-field cantilever bending is primarily due to the presence of a strain gradient 

(curl). Nevertheless, near the boundary where the cantilever is attached to the substrate, 

an angular tilt deformation arises from the superposition of the uniform residual stress, 

σ0, and from the gradient stress, σ1.  However, the determination of the residual stress 

through the angular tilt at the boundary reflects the global residual stress, the stress of the 

SiC- Si heteroepitaxial system.  In order to evaluate the local residual stress present in the 

poly-SiC film, free-standing structures have to be realized. 

 An effective technique, as reported by Goosen et al., makes use of a micro-

rotating structure to measure the local uniform residual stress in the film.  The underlying 

principle of the ability to detect uniform residual stress in the film is by a force couple 
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generated by two free-standing actuating beam structures on a central, rotating beam, 

Figure 2.20.  When the structure is freed from the substrate, the slightly-offset actuating 

beams contract (initially, in tension) or elongate (initially, in compression) causing the 

indicator beam (labeled “rotating beam” in the figure) to deflect.  If the beam connections 

are considered to be ideal, the rotation angle of the indicator (rotating) beam is directly 

proportional to the strain in the film.  A mathematical model can be easily derived using 

small angle approximations and triangular ratios. 

 

 

(a) (b) 

Figure 2.20  Schematic illustration of a conventional planar micro-rotating 
structure (Drieenhuizen 1993) used to measure strain gradient in a thin film.  

 

 The relationship between tip deflection, y, and the strain is given by: 
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 Lg is the distance between the connection of the actuation beams, LA and LB, are 

the lengths of the actuating beams which are designed to be equi-dimensional in most 

cases.  The distance, Lg should be small in order to increase the sensitivity of the sensor, 
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but not so close that they interact and cause unintentional buckling with films under 

compressive strain.  From the residual strain calculated from equation 2.15, it is possible 

to determine the residual stress for a biaxial film (equation 2.6) using the stress-strain 

relationship: 
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Now that the theoretical basis for both the observed stress in SiC films grown on Si 

substrates has been presented, along with the means to determine this stress, the next 

topic involves how the SiC/Si heteroepitaxial films were realized during this dissertation 

research. 

 

2.6 CVD Reactor Hardware 

 The CVD reactor used for this research was the horizontal hot-wall reactor shown 

in Figure 2.24, which was designed and built by the SiC Group at the University of South 

Florida (Myers 2006).  The reactor chamber wall is a fused quartz tube supported by 

water-cooled electropolished stainless steel endplates.  The gases are regulated via mass-

flow controllers (MFC) and flow into the head plate (left side of Figure 2.21) by ¼˝ 316L 

stainless steel gas lines.  A round diffuser plate consisting of several small, evenly-spaced 

holes disperses the gas stream and helps to establish laminar flow.  The gases are 

funneled from the diffuser plate by a quartz inlet tube to the hot zone of the reactor.  The 

hot zone consists of a SiC-coated graphite susceptor surrounded by graphite foam 
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insulating support.  The susceptor provides a means of converting electromagnetic energy 

from the RF induction coils to thermal energy so the necessary CVD reaction can occur 

at the substrate surface.  The ceiling of the susceptor was designed with a gradual taper so 

that the height of the upstream portion is higher than the downstream portion of the 

susceptor.  The taper causes an increase of the gas velocity as it moves through the 

susceptor and, as a result, decreases the thickness of the boundary layer.  This improves 

the film uniformity across the wafer.  The graphite foam provides a physical means of 

supporting the susceptor and insulating the susceptor which reduces thermal gradients 

due to radiative and conductive losses in the susceptor.  The water-cooled copper coil 

surrounding the reactor in Figure 2.21 heats the reactor hot-zone by radio frequency (RF) 

induction.  A 50 kW/ 10 kHz solid state RF generator, manufactured by Mesta 

Electronics Inc., is capable of inductively heating the susceptor to temperatures greater 

than 2000°C.  The temperature of the hot zone is monitored by an optical pyrometer, 

which measures temperature by monitoring the susceptor’s black body emission.  The 

pyrometer is aimed at a small hole in the susceptor which has been bored to a depth near 

the growth zone, so that an accurate temperature measurement at the growth zone can be 

obtained.  The temperature and gas flow is regulated by feeding the data back to the RF 

generator and MFCs, respectively, by a computer interface written in LabViewTM.  The 

CVD reactor is currently configured to flow propane (C3H8) and silane (SiH4) which 

serve as the SiC precursor gases, nitrogen (N2) for n-type doping, and argon (Ar) or 

hydrogen (H2) as the carrier or annealing gas.  The reactor also has the capability to use 

hydrogen chloride (HCl) or methyl chloride (CH3Cl) to add chlorine to the reactor 

chemistry (Reyes, 2008).  The H2 gas is purified via a palladium cell and the Ar is 
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purified by a catalytic purifier.  An Edwards DP-40 dry pump and throttle valve regulates 

the CVD chamber pressure. 

 

 

Figure 2.21  Photograph of the MF2 CVD horizontal reactor at USF.  MF2 was 
used for the growth of all films reported in this thesis and is dedicated solely for 
3C-SiC on Si growth and processing (Myers 2006). 
 

 



www.manaraa.com

58 

 

 

 
CHAPTER 3: DEVELOPMENT OF LOW-TEMPERATURE POLY-SiC 

GROWTH PROCESS FOR POLY-Si-ON-OXIDE SUBSTRATES 

 

 Micro-electrical-mechanical systems (MEMS) are used for numerous applications 

from automobile airbag sensors to combustion control, sensors and medical diagnostics 

such as DNA assays, just to name a few.  These MEMS applications have been supported 

by Si MEMS, which can be readily made using micromachining techniques developed 

for the microelectronics industry.  One of the powerful fabrication approaches for Si 

MEMS is the use of poly-Si as the MEMS structure, such as cantilevers and membranes, 

that are deposited on oxide release layers.  These mechanical layers are activated (i.e., 

released) simply by placing the sample in an HF solution which dissolves the oxide and 

thus leaves a free-standing poly-Si structure supported over the substrate surface. 

 One of the drawbacks of Si MEMS is the fact that Si, while a very durable and 

easy to machine material, is not suitable for harsh environments due to the lack of 

material resilience at elevated temperatures and when exposed to harsh chemicals and 

radiation.  SiC is a natural material for such harsh-environment sensors, and since SiC 

can be micromachined using similar processes to Si, much work has been done to 

develop SiC-based MEMS (Mehregany 1999) (Mehregany 1998).  While the cubic form 

of SiC, 3C-SiC, can be deposited directly on Si and the 3C-SiC layer patterned using 

reactive ion etching (RIE), the only way to release the 3C-SiC layer is wet KOH etching 
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of the underlying Si.  The resulting material is often rough due to Si residue from the etch 

which can diminish device performance in addition to adding cost to the device 

manufacture (KOH etching can take more than an hour in most cases).  Being able to 

employ oxide release layer strategies to SiC-based MEMS clearly would be a major step 

forward in SiC-MEMS technology, but in order to achieve this goal two things must 

happen.  First, a low temperature 3C-SiC on Si growth process must be developed, which 

will be discussed in the opening of this chapter.  Second, a poly-Si (or single-crystal but 

very thin) layer must be deposited on top of the oxide release layer to allow for the 

formation of the 3C-SiC film.  In this chapter research to realize exactly these objectives 

is discussed where we have demonstrated a high-quality poly-3C-SiC on oxide film 

process that is suitable for subsequent MEMS manufacture which will be the subject of 

future work as outlined in the following chapter. 

 

3.1 Motivation for Reducing Process Temperature 

 From an economic viewpoint, the faster growth rate of the high temperature (T > 

1300C) 3C-SiC heteroepitaxial process would make its incorporation into SiC device 

fabrication desirable.  However, the extreme temperatures severely limit the selection of 

materials during the fabrication to mainly refractory-type materials.  Otherwise, device 

structural integrity may be lost or undesirable diffusion into the surrounding area may 

lead to device failure.  For example, metals such as Au and Al, frequently used in device 

fabrication, have melting points far below 1380°C and silicon dioxide, having a glass 

transition temperature near 1200°C, exhibits plastic flow at the temperatures used for 

high temperature 3C-SiC growth as described in Chapter 2.  Another issue arises from the 
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8% coefficient of thermal expansion (CTE) mismatch between 3C-SiC and Si.  When the 

3C-SiC hetero-epitaxial film cools from the high growth temperature to ambient room 

temperature, thermal stress develops at the 3C-SiC/ Si interface putting the 3C-SiC film 

under tension and inciting stress-relieving mechanisms, such as wafer bow, to emerge.  

The greater the ΔT between the growth temperature and the cooled 3C-SiC/ Si wafer, the 

greater the bow.  Excessive wafer bow can complicate subsequent processing of the 

wafer, induce the deformation of free-standing structures, or cause catastrophic substrate 

fracture or film delamination.  Another stress-relieving mechanism is the formation of 

planar crystal defects such as glide twins and stacking faults. 

 When these temperature-related issues are considered, the development of a low-

temperature (T ≤ 1200C) 3C-SiC hetero-epitaxial process appears to be a necessity if 

3C-SiC film growth is to be incorporated with other fabrication processes, especially for 

MEMS applications where oxide release layers are critical. 

 

3.2 Low Temperature Process Development 

 Since prior 3C-SiC growth on (111)Si had been conducted using a high 

temperature growth regime (~1380°C), no low-temperature process had been 

systematically developed.  An established low temperature growth process would exploit 

the morphologically flat films possible on (111) oriented substrates, but with reduced 

wafer bow and fracturing associated with (111) oriented heteroepitaxial growth.  A low 

temperature growth process would also be compatible for the growth of 3C-SiC on oxide-

coated Si compliant substrates. 
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3.2.1 Low Temperature Baseline Process 

 The subsequent 3C-SiC growth was performed as follows.  A (111)Si wafer was 

placed in a horizontal, hot-wall reactor heated by the RF induction of a SiC-coated 

graphite susceptor.  The wafer was loaded into a molded poly-SiC plate to fix the position 

of the wafer within the reactor hot zone.  This polyplate was then seated into a recess in 

the susceptor and the chamber was sealed and evacuated of residual gases.  The chamber 

was then filled with palladium-purified hydrogen to a pressure of 400 Torr.  The 3C-SiC 

process developed for this reactor involves two main process stages, namely the 

carbonization and growth stages (Reyes 2007).  The pressure for the carbonization 

process was 400 Torr, and growth pressure was 100 Torr based on the high temperature 

process.  The standard gases used for 3C-SiC growth were: palladium-purified hydrogen, 

H2, which is used as the transport gas; propane (C3H8), which is the carbon precursor; and 

a 10% silane (SiH4) premixed in 90% hydrogen ballast(H2), which is the silicon 

precursor. 

 The carbonization stage occurred while the sample temperature was ramped to 

1135°C at a rate of ~35 °C/min.  Throughout the ramp a flow of 16 sccm of C3H8 was 

maintained with a mass flow controller (MFC), and the H2 carrier gas flow was 

maintained at 10 slm.  Once the carbonization temperature was reached, the temperature 

was maintained for 3 min to allow conversion of the (111)Si surface into 3C-SiC.  After 

carbonization and creation of the 3C-SiC template layer, the temperature was ramped a 

second time at a rate of ~35°C/min to the growth temperature of 1200°C.  During this 

ramp, we determined that it was advantageous to decrease the flow of C3H8 while 

simultaneously introducing and increasing the flow of 10%SiH4/ 90%H2 in a step-wise 
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manner. At the growth temperature the input gas silicon to carbon ratio, Si/C, for the 

growth stage was 1.2. H2 flow was maintained at 10 slm until 30°C before the ramp was 

completed, where it was increased to 40 slm, and the pressure was simultaneously 

reduced from 400 Torr to 100 Torr.  The temperature and gas flows were then held 

constant, allowing the continued epitaxial growth of 3C-SiC on the carbonized (111)Si 

wafer.  Figure 3.1 graphically summarizes the baseline low temperature process. 

 

 

Figure 3.1  Initial baseline low temperature (1200C) CVD growth process 
schedule. 

 

The initial test dies yielded a hazy surface over the die that were placed on a standard test 

polyplate, a sintered SiC plate which holds the 8 x 10 mm silicon dies in a consistent 

location in the reactor hot zone. 

 A series of experiments were conducted in order to obtain a uniform, specular 

film deposition within the growth zone.  As briefly discussed in Chapter 2, several 

parameters govern the film deposition when using chemical vapor deposition.  In order to 

develop an optimized process only one growth parameter was changed at a time while all 
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others were held constant.  Sometimes this can be difficult to achieve if a multitude of 

experiments are conducted, since the process of film deposition itself alters the reactor 

condition.  The first series of experiments involved decreasing the molar concentration of 

SiH4 since it was reasoned that C3H8 would not crack as effectively at the lower growth 

temperature, thus resulting in a Si saturated gas composition.  The time of film growth 

was set at 20 minutes for all experiments since thin polycrystalline films are difficult to 

discern from thin monocrystalline films in the early stages of growth.  In a series of four 

experiments, the Si/C ratio was varied in increments of 0.2 from 1.4 to 0.8, the C3H8 

molar concentration was held constant while the 10%SiH4/ 90%H2 flux was varied.  The 

best result was obtained for a Si/C ratio of 1.2, although the film was visually hazy in 

appearance, it demonstrated the least haziness and had the largest grain sizes of the four 

samples when viewed at 500X magnification using an optical microscope.  The next 

series of experiments involved decreasing the precursor concentration in the H2 carrier 

gas.  The initial precursor molar fraction values for dilution of 5.5 sccm of C3H8 and 200 

sccm of 10%SiH4/ 90%H2 in 40slm H2 were xsilane= 0.5x10-3 and xpropane= 0.139x10-3.  

The total precursor concentration was reduced so that the flow rate for propane was 3 

sccm.  This resulted in molar fractions of xsilane= 0.027x10-3 and xpropane= 0.075x10-3.  The 

resulting film morphology was clear and colorful, which indicated very thin film growth.  

The same experiment was run for 40 minutes to realize a thicker film for a more reliable 

quality assessment.  The resulting 40 minute film growth was hazy and displayed a very 

granular morphology when viewed using 200X magnification optical microscopy.  The 

SiC deposits on the polyplate revealed an important detail about the deposition pattern 

occurring in the hot zone of the reactor; it appeared that the optimum deposition was 
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occurring downstream from the position of the test dies.  The H2 carrier gas flow was 

then reduced in 5 slm increments from 40 slm to 20 slm while maintaining a constant 

precursor mole fraction.  The best deposition occurred at a 25 slm H2flow rate.  A growth 

run was performed to assess the deposition rate.  A 1 hour growth duration produced a 

1.4 µm thick 3C-SiC film.  A series of experiments were planned to increase the 

deposition rate and improve film quality via modification of the Si/C ratio and precursor 

concentration. 

 

3.2.2 Optimized Low Temperature Process 

 Once the low temperature baseline process had produced heteroepitaxial films 

with a clear, specular morphology, the optimum Si/C ratio needed to be determined for 

the new growth process.  Although it was determined that the best morphology occurred 

at a Si/C=1.2 during the establishment of the low temperature baseline process, the 

position of the growth zone was moved upstream via carrier gas flow adjustment 

(reduced flow in this case).  As the reactants travel through the hot zone, the Si/C ratio of 

the gas is constantly shifting in favor of a carbon rich atmosphere.  This is believed to be 

the result of the Si supplied by SiH4 being unavailable for surface reactions due to the 

formation of Si clusters in the gas stream (Vorob'ev, et al. 2000).  Again, a series of film 

growths were conducted by varying only the Si/C ratio in 0.1 increments ranging from 

1.2 to 0.9 while all other growth parameters were held constant.  The samples were 

visually inspected under an optical microscope and it was determined that a Si/C=1.1 

displayed the smoothest surface morphology with the fewest inclusions.  Although visual 

inspection of the film provides only a qualitative assessment of film quality, surface 
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morphology is frequently related to crystal defects and this approach is a valuable tool 

when simplicity and immediate feedback is required.   

 An increase in the deposition rate was the focus on the next set of experiments.  

The current growth schedule involved diluting 3 sccm of C3H8 and 99 sccm of 10%SiH4/ 

90% H2 in 25 slm of H2 carrier gas while under 100 Torr of pressure at 1200° C.  The 

precursor concentration was increased to xpropane= 0.16x10-3 and xsilane= C3H8= 4 sccm 

and 10%SiH4/ 90%H2=120 sccm diluted in 25 slm of H2, maintaining the Si/C ratio at 

1.1. The flow rate of C3H8 and 10% SiH4/ 90% H2 was increased to 4.0 sccm and 120 

sccm, respectively.  The resulting film was hazy and exhibited a granular morphology 

under optical microscope inspection.  A growth run using a flow rate of C3H8=3.5 sccm 

and SiH4= 115 sccm also demonstrated degraded film quality.  The process pressure was 

further reduced from 100 to 75 Torr, the lowest obtainable pressure for the low 

temperature growth condition in the MF2 reactor.  The pressure was decreased in an 

attempt to increase the amount of available reacting Si species by decreasing the 

tendency to form Si clusters.  Computer modeling and experiments suggest that the 

deposition rate is sensitive to the available Si bonding sites (Vorob'ev, et al. 2000).  By 

decreasing the pressure, Si clusters should tend to dissociate, maintaining all other 

variables unchanged from the 100 Torr growth schedule.  The resulting film grown at 3 

sccm of C3H8, 99 sccm of 10%SiH4/ 90% H2 diluted in 25 slm H2carrier gas under 75 

Torr yielded improved film morphology.  Unfortunately attempts to increase the 

precursor molar concentration resulted in degraded film morphology. 

 A growth run on an RCA cleaned, quartered 50 mm (111) Si wafer was 

performed to assess the film deposition rate.  A forty-five minute 3C-SiC deposition 
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experiment was conducted and measurements via FTIR yielded a growth rate that 

increased from 1.4 µm/h to 1.9 µm/h.  The process conditions resulted in a clear, specular 

film.  The film morphology was assessed using optical microscopy and atomic force 

microscopy.  However, the bowed substrate revealed the presence of residual film stress.  

No fractures could be seen visually with the unaided eye, but under 200X, small cracks 

could be seen.  A subsequent growth experiment was performed on an RCA cleaned, 50 

mm (111)Si wafer using the optimized low temperature/ low pressure growth process.  

The duration of the growth plateau was 90 minutes and yielded a 2.84 µm thick film 

(measured at the wafer center).  The wafer was noticeably bowed and fractures could be 

seen with the unaided eye across the wafer surface.  The cracks formed a triangular 

pattern along the <110> directions on the wafer.   

 The low-temperature (111)3C-SiC process was then applied at increased growth 

temperatures up to 1380°C.  The plot of the natural logarithm of the growth rate versus 

the inverse of the deposition temperature is illustrated in Figure 3.2.  The low negative 

slope suggests a transport-limited regime for the 75 Torr low temperature growth process.  

This was expected since a previous experiment showed that the growth rate decreased 

from 4.5 µm/h to 3.2 µm/h when the pressure was increased from 100 Torr to 400 Torr at 

1380°C.  

 Atomic force microscopy (AFM) scans were performed to ascertain the surface 

morphology of the 3C-SiC films.  X-ray diffractometery (XRD) was performed on the 

3C-SiC film to verify the film orientation and crystalline quality. 
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Figure 3.2  Plot of the deposition rate vs. inverse temperature using the 
optimized low-temperature/ low pressure growth process at various growth 
temperatures.   

 

3.3 Poly-SiC Growth on Poly-Si-on-Oxide Substrates 

 The growth of polycrystalline SiC, grown on a poly-Si seed layer previously 

deposited on an oxide release layer (see chapter 2) was studied next.  Highly oriented 

3C-SiC films were formed directly on an oxide release layer, composed of a 20-nm-

thick poly-Si seed layer and a 550-nm-thick thermally deposited oxide on a (111)Si 

substrate, was investigated as an alternative to using SOI substrates for freestanding SiC 

films for MEMS applications.  The resulting SiC film was characterized by x-ray 

diffraction (XRD) with the x-ray rocking curve of the (111) diffraction peak displaying a 

FWHM of 0.115º (414″), which was better than that for 3C-SiC films grown directly on 

(111)Si during the same deposition process.  However, the XRD peak amplitude for the 

3C-SiC film on the poly-Si seed layer was much less than that for the (111)Si control 

substrate due to slight in-plane misorientations in the film.  Surprisingly, the film was 

solely composed of (111)3C-SiC grains and possessed no 3C-SiC grains oriented along 

the <311> and <110> directions which were the original directions of the poly-Si seed 
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layer.  With this new process, MEMS structures such as cantilevers and membranes can 

be easily released leaving behind high-quality 3C-SiC structures. 

 

3.3.1 Motivation for 3C-SiC Growth on Oxide Layers 

 SiC is a semiconductor material that is desirable for many power electronics and 

MEMS applications due to its wide band gap, mechanical resilience, robust thermal 

properties, and chemical inertness.  However, many of these inherent properties create 

extreme difficulties when processing MEMS devices with this material.  SiC chemical 

resistance reduces the effectiveness of wet chemical etching and requires the use of dry 

etching techniques involving reactive ion etching (i.e., DRIE/RIE).  Fortunately, cubic 

silicon carbide, 3C-SiC, is the one polytype of SiC that can be grown heteroepitaxially on 

Si substrates, and the addition of this Si layer allows for many more processing options in 

device manufacturing.  For example, one can utilize the Si substrate as a sacrificial layer 

for the creation of freestanding 3C-SiC MEMS structures (Beheim and Evans 2006) 

(Carter, et al. 2000).  However, the recipes used to etch Si in DRIE/RIE have a similar 

etch rate with SiC, thereby excluding selectivity and reducing accuracy for the desired 

structure (Beheim and Evans 2006) (McLane and Flemish 1996) (Rosli, Aziz and Hamid 

2006).  Freestanding SiC MEMS devices using sacrificial Si layers have also encountered 

difficulties during device fabrication resulting from unetched Si preventing the complete 

release of the structure (Beheim and Evans 2006) (Carter, et al. 2000).  Silicon dioxide, 

SiO2, has been traditionally used as an etch-stop in Si processing involving DRIE/RIE, 

and can be easily removed by wet chemistry processes to allow for the full release of 

freestanding structures (Federico, et al. 2003).  With this in mind, silicon-on-insulator, 
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SOI, substrates provide an excellent media for the creation of freestanding SiC devices by 

providing not only an oxide for the etch-stop for DRIE/RIE, but also a Si crystal seed 

layer for the heteroepitaxial growth of the 3C-SiC (Shimizu, Ishikawa and Shibata 2000) 

(Myers, Saddow, et al. 2004). 

 SOI provides some additional benefits for the growth of 3C-SiC as shown in 

previous studies (Shimizu, Ishikawa and Shibata 2000) (Myers, Saddow, et al. 2004).  

The high temperatures required for the growth of single-crystal 3C-SiC soften the SiO2 

layer, allow dispersion of stress caused by the ~20% lattice mismatch between SiC and 

Si, and suppress the formation of voids caused by Si evaporation at the 3C-SiC/ Si 

interface (Carter, et al. 2000).  Although thick SOI seed layers (>50 nm) have been 

shown to produce 3C-SiC films that are of comparable quality when compared to 3C-SiC 

films grown on single-crystal Si substrates, the benefits of the epitaxial growth of 3C-SiC 

on SOI are only realized when 3C-SiC is deposited on a thin (<50 nm) seed layer of Si, 

which produces excellent quality 3C-SiC (Shimizu, Ishikawa and Shibata 2000) (Myers, 

Saddow, et al. 2004).  However, a major drawback of using SOI in the production of 3C-

SiC devices is the fact that it requires extensive processing techniques (Shimizu, 

Ishikawa and Shibata 2000) (Myers, Saddow, et al. 2004).  These processes add to the 

overall production cost of the device.  In addition many MEMS devices do not require 

single-crystal SiC material for proper functionality.  A cost-efficient, easily produced 

wafer stack consisting of poly-Si/ SiO2/ Si layers could replace the SOI substrate if poly-

SiC is desired as a material for MEMS applications. 
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3.3.2 Deposition of Poly-Si Layer on SiO2/ (111)Si 

 For our experiments we replaced the expensive SOI wafer with a stack of poly-Si/ 

SiO2/ (111)Si, where the poly-Si serves as the seed layer for the subsequent growth of 

poly-SiC.  The results of the growth were surprising because, instead of producing a layer 

of typical poly-SiC, the resulting growth was 3C-SiC that was highly oriented in the 

<111> direction, and contained no grains in the <110> direction, which was the favored 

orientation of the poly-Si grains.  Substrate preparation for the growth experiments was 

as follows.  A (111)Si wafer was RCA cleaned, followed by the CVD deposition of 5500 

Å of silicon dioxide. After oxidation, a 50-nm-thick film of poly-Si was deposited by 

LPCVD at a temperature of 610°C and a pressure of 300 mTorr (Harbeke, et al. 1984).  

This process was chosen from the various poly-Si recipes for many reasons.  The first is 

that a compressive stress is produced between the resulting poly-Si film and the oxide 

layer, which should help bring the Si crystal lattice into greater compliance with the 3C-

SiC crystal lattice (Yang, et al. 2000).  A secondary reason for the growth of poly-Si at 

this temperature is that it generates large columnar Si grains textured mainly in the <110> 

direction with a minor presence of grains textured in the <111> and <311> directions 

(Harbeke, et al. 1984).  The resulting thin poly-Si film was characterized by both AFM 

and XRD to ascertain the starting growth surface properties.  The AFM, performed on a 

PSIA XE-100 microscope, shows a surface with grains of average area on the order of 

5.5 nm2, having an average surface roughness of 0.49 nm rms, but also indicated the 

presence of pinholes in the surface.  The XRD measurements were performed on a 

Philips Panalytical X’pert Diffractometer operating at the Cu K-α line, and the 

measurements indicated alignment of the poly-Si grains in the <110>, <111>, and <311> 
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directions, as was expected from the literature (Harbeke, et al. 1984) (Yang, et al. 2000).  

The pinholes created difficulties during the deposition of 3C-SiC by creating a pathway 

for softened oxide material to flow onto the growth surface thus damaging the 3C-SiC 

film morphology.  Therefore, as outlined in the last section, the temperature for growth 

was reduced from the temperatures developed previously (M. Reyes, et al.) to eliminate 

this problem, resulting in the maximum growth temperature for 3C-SiC on the film stack 

of 1200°C. 

 

3.3.3 Polysilicon Carbide Growth Process 

 The final optimized growth process is as follows.  The poly-Si/ SiO2/ (111)Si 

wafer stack was placed in a horizontal, hot-wall reactor heated by the RF induction of a 

SiC-coated graphite susceptor as outlined in Chapter 2.  The wafer was loaded into a 

molded poly-SiC plate to fix the position of the wafer within the reactor hot zone.  This 

poly-SiC plate was then seated into a recess in the susceptor and the chamber was sealed 

and evacuated of residual gases.  The chamber was then filled with palladium-purified 

hydrogen to a pressure of 400 Torr.  The 3C-SiC process developed for this reactor 

involves two main process stages, namely the carbonization and growth stages (Reyes 

2006).  The pressure for the carbonization process was 400 Torr, and growth pressure 

was 100 Torr.  The standard gases used for 3C-SiC growth are: palladium-purified 

hydrogen, H2, which is used as the transport gas; propane (C3H8), which is the carbon 

precursor; and a 10% silane (SiH4) premixed in hydrogen, which is the silicon precursor. 

 The carbonization stage occurred while the sample temperature was ramped to 

1135°C at a rate of ~ 35°C/min.  Throughout the ramp, a 2.38×10-3 C mole fraction was 
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maintained.  Once the carbonization temperature was reached, the temperature was 

maintained for 3 min to allow for conversion of the poly-Si surface into 3C-SiC.  After 

carbonization and the creation of the 3C-SiC template layer, the temperature was ramped 

a second time at a rate of ~35°C/min to the growth temperature of 1200°C.  During this 

ramp, we determined that it is advantageous to slowly decrease the flow of C3H8 while 

simultaneously introducing and increasing the flow of SiH4. H2 flow was maintained at 

10 slm until 30°C before the ramp was completed, where it was increased to 25 slm, and 

the pressure was reduced from 400 Torr to 100 Torr.  At the growth temperature the 

silicon to carbon ratio, Si/C, for the growth stage was 0.94, with a 3.94×10-4 C mole 

fraction and a 3.71×10-4 Si mole fraction.  The temperature and gas flow were then held 

constant, allowing for the continued epitaxial growth of 3C-SiC on the carbonized poly-

Si buffer layer.  The reactor had no wafer rotation, so the process parameters produced a 

growth rate of 3.0µm/h near the upstream-side of the wafer and 2.5µm/h at the 

downstream-side of the wafer due to precursor depletion.  This rate, measured using an 

Accent QS-1200 FTIR system to determine film thickness, was also verified on samples 

of 3C-SiC grown on single-crystal Si oriented in the <100> and <111> directions using 

identical process conditions as reported above. 
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3.4 Analysis of the Poly-SiC-on-Oxide Film 

3.4.1 AFM Analysis 

 Atomic Force Microscopy (AFM) surface analysis was used to characterize the 

film morphology as shown in Figure 3.3.  The growth of SiC on the poly-Si/ SiO2/ 

(111)Si substrate was compared with 3C-SiC grown directly on (100) and (111)Si 

substrates.  The morphology of the surface of the 3C-SiC on the poly-Si stack was similar 

to that of the 3C-SiC grown on Si (111), showing growth of ordered triangular island 

grains of similar size.  The AFM micrograph of 3C-SiC grown on Si (100) has smaller, 

rounded, and more disassociated island growth with a large distribution in grain size. A 

cross-section SEM micrograph displays the growth of 3C-SiC on the poly-Si stack near 

the downstream sector of the wafer shown in Figure 3.4.  This cross-section SEM, 

performed on a Hitachi 4800 microscope, shows that the thickness of the 3C-SiC film 

grown for 30 min on the poly-Si stack was ~1.3 µm, verifying the growth rate as 

measured by FTIR.  An important aspect of this growth process is that the oxide 

remained perfectly intact and was unaffected during the growth of the 3C-SiC. 
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Figure 3.3  AFM micrographs of the surfaces of the SiC deposition grown on 
(a) poly-Si/ SiO2/ (111)Si, (b) (111)Si, and (c) (100)Si.  The 5µm x 5µm images 
were collected in contact mode using a SiN tip.  The respective z resolution and 
rq values are (a)-78nm to 81.4nm, rq=17.9nm, (b) -117.3nm to 118.4nm, rq= 
26.5nm, and (c) -47.7nm to 47.5nm, rq=6.57nm. 
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Figure 3.4  Cross-section SEM micrograph of a 3C-SiC film grown on the poly-
Si/ SiO2/ (111)Si compliant stack.  The 3C-SiC grown has a thickness of 
~1.3µm and the SiO2 layer is ~0.55µm thick.  The poly-Si layer was estimated 
to be ~20nm.  Note that the SiC/ SiO2 interface is undamaged. SEM analysis 
conducted by D. Evans, SRI, Largo, FL. 

 

3.4.2 XRD Analysis 

 Figure 3.5 shows the θ-2θ x-ray diffraction (XRD) spectra and high-resolution 

rocking curves performed on the 3C-SiC films for determination of the crystal orientation 

and quality of the 3C-SiC layer.  For the 3C-SiC film grown on the poly-Si/ SiO2/ (111)Si 

stack a very strong peak was observed at 35.6º while a weaker peak at ~71.8º is due to 

reflections from the (111)3C-SiC and (311)3C-SiC planes, respectively.  It is also evident 

that there are no SiC reflections originating from the <110> direction, which were the 

main grain orientations present in the poly-Si seed layer.  A comparison of the relative 

peak intensities suggests a preference for grain alignment in the <111> direction, while 

very few grains appear to be aligned along the <311> direction.  The 3C-SiC films grown 

on (111)Si and (100)Si show dominant peaks at 35.6° and 41.4°, respectively. 
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c) 

Figure 3.5  XRD θ-2θ diffraction surveys for the 3C-SiC films grown on (a) 
poly-Si/ SiO2/ (111)Si, (b) (111)Si, and (c) (100)Si substrates.  The XRD θ-2θ 
scans show that (a) and (b) possess a primary peak at 35.6°, and (c) possesses a 
primary peak at 41.4°.  Insets: rocking curves for each of the 3C-SiC films 
taken at their respective primary Bragg peaks.  The FWHM values are 0.115° 
(414˝), 0.134° (482˝), and 0.128° (460˝), respectively. 

 

 The rocking curves were taken at the primary Bragg peak for each the 3C-SiC 

epitaxial films.  The insets displayed in Figure 3.5 show the results of the rocking curves 

obtained for each substrate type.  The rocking curve for the 3C-SiC films on poly-Si/ 

SiO2/ (111)Si substrate displayed a FWHM of 0.115º (414″), the 3C-SiC on (111)Si was 

0.134º (482″), and the 3C-SiC on (100)Si displayed FWHM value of the 41.4° peak of 

0.128º (460″).  The correlation of the FWHM values from the growth performed on poly-

Si/ SiO2 / (111)Si versus the growth performed on single-crystal Si appears to suggest 
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that all films have relatively comparable crystallinity.  This correlation proves to be very 

interesting because the growth of the 3C-SiC film on the poly-Si/ SiO2 / (111)Si stack 

began on a poly-Si seed layer with multiple orientations, and when compared to 3C-SiC 

films by Carter, et al. (Carter 2000) grown on SOI of similar Si seed and oxide layer 

thicknesses (50 nm and 0.5 µm, respectively), the reported FWHM value was 0.20° 

(720″), which is almost double the FWHM of the 3C-SiC grown on the poly-Si seed 

reported in this work.  

 Speculation suggests that the result of the weak amplitude from the Bragg 

reflections seen in the θ-2θ diffraction scan and the relatively narrow FWHM 

measurement from the rocking curves indicate a highly-ordered polycrystalline 3C-SiC 

layer in which the crystallites are misaligned relative to each other but all appear to be of 

the <111> direction.  While the <111> direction of the 3C-SiC planes of the various 

grains are still approximately parallel to one another, producing a relatively narrow 

rocking curve, the (111) planes rotated about the <111> direction would produce a weak 

amplitude count in the θ-2θ survey. 

 

3.5 Summary 

 In summary, a well ordered polycrystalline 3C-SiC film with grains 

predominantly along the <111> direction has been successfully grown on a poly-Si/SiO2/ 

(111)Si wafer and the process results verified multiple times. This process was developed 

to create an easy to release 3C-SiC layer for use in MEMS applications and, therefore, 

will be useful for MEMS applications that will benefit from 3C-SiC structures.  The cost-

effectiveness and relative ease for the deposition of both oxide and poly-Si make this 
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process superior to the methods used to fabricate SOI substrates, and the oxide layer 

provides more device processing options than 3C-SiC grown directly on single crystal Si.  

Fortuitously, the resulting 3C-SiC films were highly ordered in the <111> direction and 

their quality assessed using AFM, SEM, and XRD analysis. The quality of the ordered 

3C-SiC grown on the poly-Si stack is comparable to that of 3C-SiC grown on a single 

crystal Si, and much better than that of 3C-SiC grown on conventional SOI as reported in 

literature.  
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CHAPTER 4: INFLUENCE OF POLYSILICON SEED-LAYER THICKNESS ON 

POLY-SiC RESIDUAL STRESS 

 

 In Chapter 2, it was briefly discussed that the intrinsic stress present in thin films 

was determined by many non-equilibrium growth processes that take place early during 

the film’s deposition.  The grain structure, size and growth evolution are the 

manifestations of the cumulative effect of these processes and, as a result, they play a 

vital role in stress management.  The use of a polysilicon seed-layer to grow poly-SiC can 

have the advantage as serving as a template to influence the grain growth evolution in the 

poly-SiC film in a way that is analogous to using a carbonization plateau to reduce 

defects in crystalline 3C-SiC.  Polysilicon can exhibit intrinsic compressive or tensile 

stress depending on the deposition conditions, most notably the deposition temperature, 

Figure 4.1 (Harbeke, et al. 1984).  Compressive polysilicon films are attractive candidates 

as a seed layer for poly-SiC films since the compressed grains should have a slightly 

reduced lattice parameter which would help reduce the lattice mismatch between Si and 

3C-SiC.  The nature of this compressive stress is not entirely understood, but it has been 

postulated to be a result of hydrogen incorporation (Yu 1997), the diffusion of excessive 

adatoms into  the grain boundaries, or grain crowding due to lateral grain growth (X.-A. 

J. Fu 2004) (Maier-Schneider 1996).  Polysilicon films grown at deposition temperatures 

≥ 620°C exhibit colmunar grain structure  (Harbeke, et al. 1984) (Maier-Schneider 1996) 
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that evolves in a conical fashion, i.e. the grain size projected on the surface increases as 

the film thickness increases.  Thicker polysilicon films should have larger and highly-

textured grain faces on which poly-SiC growth can begin.  This should lead to large 

columns of highly-textured poly-SiC crystallites exhibiting lower uniform intrinsic stress 

and reduced stess gradients. 

 

 

 
Figure 4.1  Stress as a function of deposition temperature for polysilicon films.  
Note that the films deposited at < 580°C are compressive and amorphous, while 
the films deposited at ≥620°C are compressive and polycrystalline (Yu 1997). 

 

 Chapter 3 discussed the establishment of a low-temperature growth process based 

on the vitrification temperature of PECVD oxide (Polian 2002) and the preferential grain 

growth in the <111> direction of the poly-SiC film grown on polysilicon-on-oxide 

substates.  The low-temperature process described in Chapter 3 was developed using 

unpatterned polysilicon-on-oxide substrates.  The realization of poly-SiC MEMS 
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structures using polysilicon-on-oxide substrates would mean that the oxide layer would 

have to be patterned and then coated with a thin polysilicon film.  CVD-grown poly-SiC 

is deposited on the substrate and then micromachined using standard Si-based processing 

techniques.  The opening of Chapter 4 will describe the details of the fabrication process 

following afterwards with a description of the methods used to characterize the 

structures.  Chapter 4 will conclude with a discussion of the results. 

 

4.1 Fabrication of SiC MEMS on an Oxide Release Layer 

 An acetate test mask was designed using fundamental beam structures of varying 

dimensions such as cantilevers, double-clamped beams (bridges), and planar rotating 

structures, shown in Figure 4.2. This mask set served as a test-bed to find the optimum 

dimensions to use for stress-strain sensitive microstructures fabricated from poly-SiC 

grown on polysilicon-on-oxide substrates.  Due to the limitations of the printing emulsion 

used to print on the acetate, the feature resolution was limited to 20 µm.  However, the 

low cost and rapid production time made the acetate masks a good choice for design 

trials.  The acetate mask was attached to 5” x 5” soda-lime glass squares using double-

sided cellophane tape to serve as a rigid frame to stabilize the mask during 

photolithography.   
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(a) (b) 
Figure 4.2  (a) Mask layout details of the first test mask consisting of 
cantilevers/ combs, bridges, and planar rotators of various dimensions. (b) ¼ 
wafer of 3C-SiC on Si processed with this mask.  

 

4.1.1 Test Growth on Patterned Polysilicon-on-Oxide Substrates 

A test process was performed on an unpatterned, previously-fabricated 

monocrystalline, 2 inch (111)Si wafer containing a PECVD-deposited a 1µm thick oxide 

layer coated with a 90 nm thick LPCVD polysilicon layer.  It was unclear how well a 

patterned oxide would endure during the low-temperature growth process, since all 

previous growth was done on fully-intact substrates.  The polysilicon-on-oxide wafer was 

patterned with AZ® 4620, a robust photoresist used in plasma etching, and dry etched to 

remove unwanted material (described in more detail below).  Poly-SiC was then grown 

on the mesa-like poly-Si/ oxide patterns (Figure 4.3) using the low-temperature process 

described in Chapter 3. 
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Visual inspection of the wafer revealed that delamination of the 3C-SiC film had 

occurred.  Closer inspection of the film via optical microscopy showed evidence of film 

buckling and glass flow of the underlying oxide layer through pinholes in the polysilicon 

seed-layer (see Figure 4.3(a)).  The delamination could have been caused by the 

discontinuous transition from a monocrystalline film (grown in windows in the 

oxide/polysilicon films) to a polysilicon film (grown on the mesas), or the oxide layer 

softening too much and loosing traction with the poly-SiC during growth.  To correct this 

problem, the polysilicon seed-layer was stripped from the remaining poly-Si-on-oxide 

substrates so that a thin conformal layer of polysilicon could be uniformly deposited after 

the oxide was patterned for the anchor points.  It was decided to grow the 3C-SiC at 1150 

°C, which should be below the expected ~1200 °C glass-transition temperature of the 

oxide to prevent viscous flow, but hot enough to allow the compliant benefits of the 

softened oxide layer.  The results are shown in Figure 4.3(b) 

 

  
(a) (b) 

Figure 4.3  Optical micrographs of 3C-SiC grown on the patterned poly-Si/ 
SiO2/ (111)Si substrates. (a) 3C-SiC grown at 1225 °C from polysilicon only 
present on the oxide mesas (light colored regions). (b) 3C-SiC grown at 1150 
°C from uniform, conformal polysilicon deposited over the entire substrate.  
Note the absence of film buckling at the edge of the oxide mesas and glass flow 
through pinholes in the polysilicon layer. 
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4.1.2 Poly-SiC MEMS Fabrication Procedure 

RCA-cleaned (Kern and Poutinen 1970), 2 inch diameter, (111)-oriented Si 

wafers were PECVD-deposited with a 1.5µm thick layer of oxide.  The oxide-coated 

(111)Si wafers were then spin coated at 2200 rpm for 2 minutes using AZ® 4620, a 

positive photoresist used as a dry etch mask, to achieve a thickness of 7µm.  The 

photoresist-coated wafer was then soft-baked for 1 min at 115 °C on a hotplate followed 

by a 20 min cooldown.  The photoresist was aligned and patterned with the anchor 

trenches using a Quintel Mask Aligner.  The exposure time was 22 seconds using a 

filtered UV source with a light intensity of 19 mW/cm2 optimized at g-line emission.  The 

exposed wafer was then developed using AZ® 400K, a developer suited for use with 

AZ® 4620, diluted 1:4 with deionized water.  The patterned wafer was then rinsed with 

deionized water, dried with dry N2 and examined. 

Etching of the wafer was carried out using an Alcatel AM-100 Deep Reactive Ion 

Etcher (DRIE).  The plasma etching chemistry utilized a gas mixture of 

octafluorocyclobutane, C4F8, and methane, CH4, excited by a 2500 W RF source.  The 

etch rate of the oxide was ~300 nm/min.  The residual photoresist mask was cleaned with 

acetone-followed by a methanol rinse. 

The patterned-oxide wafers were then RCA cleaned prior to their loading in a 

LPCVD furnace for polysilicon deposition.  The deposition temperature was held at 610 

°C under 250 mTorr pressure while 100 sccm of SiH4 flowed.  Previous measurements of 

thicker film depositions made using this recipe indicated that 1 min of actual deposition 

time was necessary to deposit ~20nm of polysilicon.  The estimated film thickness was 

confirmed via ellipsometry.  A second set of wafers were deposited with polysilicon 



www.manaraa.com

85 

using the same recipe with a 8 min deposition time.  Figure 4.4 illustrates a brief 

summary of the process. 

 

   

(a) (b) (c) 

Figure 4.4  Summary of the patterning of anchor points for the SiC-based 
MEMS structures prior to epitaxial growth of the 3C-SiC. (a) An oxide layer is 
PECVD deposited on a (111)Si substrate. (b) Windows for anchor points are 
etched into the oxide layer. (c)  A 50-100 nm thick polysilicon layer, serving as 
a seed-layer for 3C-SiC growth, is LPCVD deposited on the patterned oxide. 

 

 The patterned poly-Si-on-oxide stack was then diced into quarters and loaded into 

a horizontal hotwall SiC CVD reactor (Figure 4.5).  It was also decided to incorporate a 

control sample consisting of a patterned monocrystalline (111)Si quarter wafer deposited 

with the polysilicon seed-layer to compare against the polysilicon-on-oxide substrate.  

The low temperature growth process is outlined in Chapter 3, section 3.2.2, was then 

employed to grow a 0.5 um thick poly-SiC film.  The reactor was then passively cooled 

under constant Ar purge to ambient room temperature and extracted for detailed 

characterization.  

 



www.manaraa.com

86 

 

Figure 4.5  A polysilicon-on-oxide substrate after poly-SiC deposition.  The 
anchor points for the structures are the “streets” between the lighter-colored 
polysilicon/ oxide “mesas”. The control sample (patterned (111)Si) is also 
shown for reference (top). 

 

Both samples were again spin-coated at 2200 rpm with AZ® 4620 then aligned 

and patterned with the MEMS structure mask. The exposed 3C-SiC was DRIE etched 

using an SF6/O2 chemistry under DC bias, Figure 4.6.  The attempt to release the MEMS 

structures using an HF vapor etch immediately revealed problems with surface-tension 

stiction and suggested that a thicker oxide layer should be implemented in future 

polysilicon-on-oxide substrates to facilitate structure release. The (111)Si substrate 

exposed after removal of the oxide  was etched using a 1:20 NH4F: HNO3 solution to 

allow enough clearance between the MEMS devices and the substrate.  The MEMS 

structures were then rinsed in a hot IPA bath and dried on a hot plate at 90 °C to facilitate 

release. 
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Figure 4.6  Optical image of the patterned and dry-etched poly-SiC.  The 
lighter-colored area is the exposed sacrificial oxide.  The length of the longest 
cantilever is 1.5mm and the width is 20µm.  Note the rounded cantilever ends 
due to the resolution limitation of the acetate mask printing process. 

 

4.2 Film Morphology 

 The surface morphology of a 20 nm and 100 nm thick polysilicon film was 

imaged using a PSIA XE-100 atomic force microscope (AFM) operating in tapping mode 

to understand how the grain size of the seed layer varies between the two depositions.  

Referencing Figure 4.7(a), the 20 nm thick poly-Si seed layer, and Figure 4.7(b), the 100 

nm thick poly-Si seed-layer, it is clear that the grain size expands rapidly with film 

thickness.  Maier-Schneider et al. reported an increase in the compressive strain of 

polysilicon films with increasing thickness.  They further explain that TEM analysis of 

the microstructure of the film revealed that the early stages of polysilicon deposition is 

littered with randomly-oriented tiny grains which initially grow conically and then 

develop a columnar morphology.  The 100 nm thick film exhibits noticeably larger, 
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triangular grain morphology.  In fact, the grains appear to have some degree of preferred 

orientation. 

 Figures 4.7(c) and 4.7(d) are AFM scans of the poly-SiC films grown from the 

corresponding polysilicon seed layers shown above them.  Both poly-SiC films were 

about 0.4 µm thick.  The surface image of the poly-SiC grown on the 20 nm thick seed-

layer, Figure 4.7(c), exhibits a fine, granular grain structure, whereas the poly-SiC grown 

on the 100 nm thick seed-layer has large, discernable polygonal-shaped grains having 

rounded caps and deep trenches at the boundaries.  From these observations alone, one 

could suspect that both poly-SiC films have a stress gradient present through the 

thickness of the film. 
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(a) (b) 

  

(c) (d) 

Figure 4.7  Top: Atomic force microscopy (AFM) scans of the polysilicon seed 
layer (a) 20nm thick and, (b) 100nm thick .  Bottom: AFM scans of the 
corresponding poly-SiC film depositions, (c) poly-SiC film grown on the 20 nm 
thick polysilicon film and, (d) poly-SiC film grown on the 100 nm thick 
polysilicon film.  Poly-SiC film thickness is ~0.5µm for both depositions. AFM 
data taken in tapping mode using SiN probes. 

 

4.3 Stress-Strain Analysis 

 The released SiC MEMS structures were examined using a Hitachi S-800 

scanning electron microscope (SEM).  Comparison of the MEMS structures fabricated 

from the poly-3C-SiC grown on the 20 nm poly-Si seed layer and on the 100 nm poly-Si 

showed opposite strain gradients present in the films.  As seen in Figure 4.8(a), the 
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polycrystalline 3C-SiC grown from the 20 nm thick seed-layer produced a large positive 

stress gradient which resulted in upward-bowed cantilevers.  Because the poly-SiC film 

grown on the 100 nm polysilicon seed layer exhibited a strong negative stress gradient 

and the wells were shallow, meaningful measurements could not be made with the longer 

cantilevers since the longer cantilevers pushed into the substrate and lifted the cantilever, 

Figure 4.8(b).  The bow present in the cantilevers fabricated from the polycrystalline 3C-

SiC film grown on both substrates indicated the presence of a substantial gradient stress 

in both films. 

 The curvature, measured far from the anchor point of the cantilevers, was 

assumed to be circular in the far-field and was approximated as circular segments.  The 

chord length and segment height was measured to determine the radius of curvature, ρ, 

Figure 4.10(a).  From these parameters, the maximum value of the stress gradient was 

determined using equation 2.14.  The results are shown in Table 4.1.   

 The planar rotator structures were not sensitive enough to detect any uniform in-

plane stress due to the short actuator beams not having enough length change when 

released from the sacrificial release layer.  However, the upward curling rotators 

micromachined from the poly-SiC grown on the 20 nm seed-layer provided out-of-plane 

deformation data with minimum influence from the anchors, an issue that has to be 

considered for cantilever measurements near the anchor point, Figure 4.9(a).  The 

measurements were determined in the same manner as the cantilever curvature.  The 

results are shown in Table 4.1.  Unfortunately, the large negative stress gradient of the 

planar rotator structures from the 100 nm seed-layer substrate pressed the beams into the 

substrate, Figure 4.9(b). 
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(a) (b) 

Figure 4.8  SEM images viewed from a 45° tilt of poly-SiC cantilevers 
fabricated from poly-SiC grown on polysilicon-on-oxide using a (a) 20 nm 
thick seed layer and, (b) 100 nm thick seed layer. Note that the stress gradient is 
opposite in both cases indicating that the polysilicon film thickness is not yet 
optimized. 

 

  

(a) (b) 

Figure 4.9  SEM images taken at a 45° tilt angle of planar rotator structures 
displaying the stress gradients present in (a) poly-SiC film grown on a 20 nm 
polysilicon seed layer (b) poly-SiC grown on a 100 nm polysilicon seed layer. 
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Figure 4.10  SEM image of the cantilevers from Figure 4.8(a) and the planar 
rotator structures from Figure 4.10(a).  Dimensions corrected for the tilt 
projection.   

 

 Although the SEM data can provide some quantitative data for measuring the 

cantilever deflection, the measurements are prone to large uncertainty errors when low-

angle tilt images are used.  All measurements were taken using a Veeco Wyko NT9100 
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optical profilometer.  An optical profilometer is a non-invasive method to measure the 

topology of a surface by using interferometry.  Light is split by a beam splitter within the 

instrument and part of the beam passes through a microscope objective and reflects off 

the surface being examined.  The other half of the beam serves as a reference beam and 

reflects off a very smooth reference mirror mounted within the optical assembly of the 

microscope objective.  The two beams recombine and are projected on a digital camera.  

Depending on the length difference of the beam paths, the light will constructively or 

destructively interfere and form alternating light and dark fringe patterns.  The focal 

plane of the objective lens is scanned vertically, intersecting the various surface features 

of the sample under investigation.  The position of the servo-controlled stage is 

monitored with the changing light intensity of the changing fringe patterns at each pixel 

of the digital camera.  From this information, the height information of the sample can be 

extracted. 
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Figure 4.11  Schematic of an optical profilometer.  Light is split by a beam 
splitter and directed through the objective to the sample surface.  The reflected 
light is combined with a reference beam and focused on a digital camera, which 
records the interference image.  The sample is vertically scanned and the height 
data is analyzed with the changing interferogram. 

 

 All measurements were made using Vertical Step Interferometry (VSI).  This 

technique uses a white light source for reliable measurement of smooth and rough 

surfaces.  Figure 4.10 shows topological images of the cantilevers made via optical 

profilometry.  Optical profilometry provides quick, high-resolution surface surveys using 

a vertically scanning sample stage and white light interferometry.  The stress gradient 

data obtained from the profilometry measurements are shown in Table 4.1. 
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Table 4.1  Maximum stress gradient values from cantilever deflection 
measurements acquired via optical profilometry.  Positive gradient values 
indicate upward deflection and negative gradient values indicate downward 
deflection. 
 

Structure (seed layer thick.) Thickness 
(µm) 

Pre-
Release 
Length  
(µm) 

Radius of 
Curvature  

(m) 

Stress 
Gradient 

Maximum, σ1 
(MPa) 

Cantilever (100 nm) 0.30 500 .0104 -41 
Cantilever (100 nm) 0.30 300 .0033 -81 

Planar Rotator (20 nm) 0.35 2000 7.20x10-6 +130 
Planar Rotator (20 nm) 0.35 2000 7.40.x10-6 +126 

Cantilever (20 nm) 0.35 1000 9.50x10-6 +101 
 

  

(a) (b) 

Figure 4.12  Optical profilometer data of poly-SiC cantilevers micromachined 
from poly-SiC grown from (a) a 20 nm poly-Si seed layer and, (b) a 100 nm 
thick poly-Si seed layer.  Notice that bowing is present in the X profile and Y 
profile data due to biaxial bending.  Also note the scale difference between both 
profiles exaggerates the bowing in the Y profile.  Images courtesy of Richard 
Everly, USF-NREC, Tampa FL. 
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CHAPTER 5: SUMMARY AND FUTURE WORKS 

 

5.1 Summary 

 A low temperature heteroepitaxial process has been developed and characterized 

for the growth of 3C-SiC on 50 mm (111)Si substrates.  A “baseline” high temperature 

process was first developed from a previously established 3C-SiC on (100)Si high 

temperature growth process.  From this baseline process, a low temperature baseline 

process at 1200°C was developed, optimized and then applied to 3C-SiC growth on a 

poly-Si/ SiO2/ (111)Si compliant substrate stack. 

 The initial base line for 3C-SiC deposition was achieved using a two-step growth 

process, carbonization of the Si substrates proceeded with a growth plateau.  The 

substrate was first heated from room temperature to 1135°C in a mixture of a H2/C3H8 

(10 slm/16 sccm) at 400 Torr.  Once at 1135°C, the substrate was maintained at this 

temperature for two minutes to carbonize the surface.  The temperature was then 

increased from 1135°C to 1380°C.  During this temperature ramp, the H2 flow was 

increased to 40 slm and the pressure was reduced from 400 Torr to 100 Torr.  The SiH4 

was introduced into the gas mixture at 10sccm and increased at intervals to the final flow 

rate of 220sccm.  Meanwhile, the propane was simultaneously decreased at intervals to 6 

sccm.  The resulting film was specular and demonstrated low crystal defects as measured 

via XRD and TEM analysis. 
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 The high temperature baseline process was then adapted for low temperature 

growth.  The carbonization occurred at 1135°C while 10 slm of H2 and 16 sccm of C3H8 

flowed through the reactor.  The carbonization process lasted for a two minute duration.  

The temperature was ramped from 1135°C to 1200°C.  It was discovered after several 

low temperature optimization experiments that a lower flow rate of the H2 carrier was 

required than the high temperature growth process.  During the temperature ramp from 

the carbonization plateau to the growth plateau, a H2 flow rate of 25 slm was 

implemented.  In order to increase the deposition rate at the lower temperature, the 

growth pressure was decreased to 75 Torr, the minimum chamber pressure possible for 

the MF2 CVD reactor.  Under these optimized conditions, the deposition rate improved 

from 1.4 µm/h to 1.9 µm/h with the transparent film exhibiting a smooth, specular 

morphology. 

 Finally, the optimized low temperature process was used to deposit 3C-SiC on an 

oxide compliant substrate.  Compliant substrates should soften at the deposition 

temperature and allow the strain inherent to heteroepitaxy to reside in the substrate thus 

ensuring a high-quality film is formed.  Deposition experiments on the poly-Si/ SiO2/ 

(111)Si stacks and various orientations of crystalline Si substrates were performed in 

tandem.  Initial measurements using XRD revealed crystal quality that rivaled or 

exceeded the films deposited on the crystalline Si substrates.  Further investigation using 

TEM and AFM analysis revealed that the films deposited on the compliant substrate 

stack were highly-textured polycrystalline silicon carbide which seems to be ideal for 

MEMS applications. 
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Based on this result MEMS structures were designed and structures fabricated in 

order to fully determine the stress-strain relationship in these poly-SiC on polysilicon 

films. Successful MEMS structures, consisting of cantilevers, bridges, comb drives and 

rotating probes, were realized in two sets of experiments. In the first set an acetate mask 

was used to allow rapid prototyping of the MEMS process (resolution 20 µm). These 

results helped to define the optimum polysilicon deposition thickness and temperature, 

and it was shown that poly-SiC structures fabricated on 20 nm and 100 nm thick 

polysilicon films contained tensile and compressive residual stress (i.e., cantilevers were 

bowed up and down, respectively). Based on these important findings, a more accurate 

mask set was designed and fabricated using chrome on quartz.  

 

5.2 Future Work 

 A cost-effective growth process capable of producing low stress SiC will need to 

be developed in order for silicon carbide to be considered a commercially viable material 

for electronic and MEMS applications.  Unfortunately, (111) oriented 3C-SiC films 

grown directly on crystalline Si substrates are plagued by stress-related issues, such as 

film deformation, commonly referred to as wafer bow, and fracturing, that overwhelm 

any benefits achieved to date.  Several techniques have been investigated to overcome the 

mismatch issues associated with SiC heteroepitaxial growth, but compliant substrates 

offer the most promising approach for the realization of devices formed on mismatched 

heteroepitaxial materials (Ayers 2008).  A wide variety of compliance methods have been 

developed over the years where a majority of the methods involve a thin film serving as a 

crystal seed template layer for epitaxial growth that decouples the thicker substrate from 
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the epitaxial film (Ayers 2008).  The benefit of using an oxide-based compliant substrate 

is that the oxide can be easily etched away thus it serves double duty as a MEMS release 

layer.  This would be invaluable for the advancement of the SiC-based MEMS and bio-

MEMS which is the research vision of the USF SiC Group at the University of South 

Florida. 

 

5.2.1 3C-SiC Growth on SOI Substrates 

 As previously discussed, oxide-based compliant substrates offer a stress-

relaxation mechanism and the benefit of an etch-stop release layer.  The work done on the 

poly-Si/ SiO2/ Si compliance stack offers many avenues to explore.  While the benefit of 

using a CVD deposited poly-seed layer is that it can be deposited using readily accessible 

tools, producing the very thin films necessary for compliancy, but potentially leaving 

“pinholes” within the seed-layer.  A viable solution to overcome this issue is to grow 

thicker CVD deposited Si films and follow with dry oxidation and HF etching of the Si 

layer.  The low oxidation rate of dry oxidation would offer better control of the seed layer 

thickness.  The poly-Si/ SiO2/ Si stack produces highly-oriented polycrystalline 3C-SiC, 

but a monocrystalline template is needed to produce highly crystalline 3C-SiC.  Initial 

work in the USF SiC Group involved the growth of 3C-SiC on SOI via cold-wall CVD. 

This work was conducted by Dr. R. L. Myers-Ward during her MS thesis research using 

silicon bonded wafers produced by Dr. Karl Hobart of NRL. Work on this Si/ poly-SiC 

SOI substrate was continued by S. Harvey via hot-wall CVD using the MF1 reactor 

(Harvey 2006).   
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The compliancy of the oxide layer could be supplemented with the incorporation 

of various dopants into the silicon over layer (SOL) of the SOI substrate to create a buffer 

layer to deposit 3C-SiC.  SixGe(1-x) alloys have already been incorporated into the SOL of 

SOI substrates and have demonstrated improved epitaxial film quality when compared to 

non-compliant substrates (Ayers 2008). What was lacking during the previous work on 

SOI substrates in our group was a high-quality, low-temperature 3C-SiC on Si growth 

process and now that this process has been developed as part of this work perhaps it is 

time to revisit SOI as a means to form high-quality films for electronic device 

applications. 

 

5.2.2 Residual Stress Characterization 

 The fundamental issue regarding heteroepitaxial growth, or any film growth for 

that matter, is the degree of in-plane film stress and how the film responds to that stress.  

Characterization the 3C-SiC film stress is going to be necessary in order to quantify and 

evaluate the effectiveness of 3C-SiC growth on future compliant substrates.  Only 

recently have tools become readily available at USF to make the necessary 

measurements.  A recently established collaboration with Dr. A. Volinsky in the 

mechanical engineering department has provided us with new characterization 

opportunities.  Nanoindentation can provide important data regarding film hardness and 

fracture toughness.  Several tools are available for wafer/film deformation analysis from 

which film stress can be extracted via the modified Stoney’s equation.  While 

deformation analysis provides valuable stress-related data, it tends to be sensitive and 

assumptions made in the derivation of the modified Stoney’s equation can produce large 
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errors.  Other techniques will need to be incorporated in order to supplement this data.  

Micro Raman Spectroscopy and XRD analysis can prove useful for quantifying in-plane 

film strain/ stress of highly-textured 3C-SiC films by measuring the peak-shifts in 

stressed films, however XRD can be very sensitive to measurement error if the peaks are 

located at 2θ < 90°.  Incorporation of these stress analysis techniques into the current 

characterization protocol of the SiC Group at USF will provide enhanced feedback for 

continued improvement of the 3C-SiC heteroepitaxy process. 

 

5.2.3 MEMS Fabrication 

 Perhaps the most obvious future work task emanating from this thesis research is 

to take the materials developed and form high-quality MEMS structures, either for 

mechanical MEMS or bio-MEMS applications. Given the thrust of the USF SiC group 

into the bioengineering arena, this work would support a whole host of research on-going 

in the group and thus allow for critical mass to be achieved, which is difficult to do in a 

university research group that is not located within a research center. Three tasks are 

recommended in this area.  

1) micro-machine 3C-SiC on (100)Si films and compare stress values to realized 

structure bow so as to correlate and correct stress measurement analysis and modified 

Stoney’s equation methods discussed in the previous section.  

2) grow additional poly-3C-SiC on oxide films, micro-machine them and compare the 

structure bow with pre-release mechanical stress measurements to see how well they 

correlate. And, finally  
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3) re-start 3C-SiC on SOI substrate research, both for MEMS applications as well as 

realizing high-quality 3C-SiC films for electronic applications.  

If these 3 tasks are pursued there is a high probability that breakthroughs in 3C-

SiC on Si technology can be made so that this polytype of SiC, the so called ‘dark horse’ 

of SiC, can take its place as the preferred polytype due to its lower cost of epi growth and 

possibility for realization on large-area, inexpensive Si substrates. To achieve this goal 

clearly more work needs to be done but the ground work has been laid in this thesis 

research as well as others around the world and there is hope that this dream may become 

a reality in the near future. 
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Appendix A Mechanics of the Biaxial Deflection of a Plate 

 

Many of the results used to analyze the mechanical properties of thin films are 

based on the solutions to fundamental mechanical problems, e.g. a simply bent beam, a 

plate deformed by a bending moment, etc.  When a film has a thickness, tf, that is 

substantially smaller than the lateral length, L, and thickness of the substrate on which the 

film is deposited, ts, then simple beam mechanics can be applied to understand the 

deflection response of the film to an applied force.  The stress state of the film-substrate 

system is analyzed using the biaxial deflection of a plate as a model, shown in Figure 

2.14(a).   

 

 

(a) (b) 

Figure A.1  (a) Schematic of a bending moment applied to a plate and a cross-
section diagram (b) showing the resulting stress gradient. 

 

 Referring to Figure 2.14(b), a beam has a bending moment, M, applied so the 

beam is placed in a pure bending state.  The origin of the coordinate system is located at  

 

 



www.manaraa.com

113 

Appendix A (Continued) 

the neutral axis of the purely bent beam.  The isotropic, biaxial stress distribution directed 

along the length of the simple bent beam is given by: 

 

 yασσ zzxx          (2.6) 

 

The first subscript denotes the direction of the applied force (stress) and the second 

subscript denotes the direction of the normal of the plane on which the force (stress) is 

being applied.  For example, σxx means the force (stress) is directed along the x-axis and 

is applied to the plane whose normal is parallel to the x-axis, in the case of Figure 

2.14(b), the y-z plane.  The distance from the neutral axis along the y-direction, y, is the 

moment arm. 

 By relating the bending stresses in the beam with the bending moment, α can be 

found: 

 

 M = 





h/2

h/2
xx ydyσ  = 






h/2

h/2

2dyyα  = 
12

hα 3      (2.7) 

 3h
M12α 

  
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Appendix A (Continued) 

Inserting into equation 2.6 yields, 

 

 3zzxx h
yM12σσ 

         (2.8) 

 

 Referencing Figure 2.15, an expression is derived relating the bending strain of a 

beam to the curvature.  Using equation 2.3 and the relationship of the arc length to the 

subtended angle and radius (i.e. definition of a radian), the following expression is 

defined: 

 

      yκ
R
y

θR
θRθyR

L
LΔyε xx 




     (2.9) 

 

Where, κ, is the curvature of the beam.  Rearranging equation 2.9 yields the relationship 

between curvature and the strain in the beam. 

 

 
 

y
yε

R
1κ xx
         (2.10) 
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Appendix A (Continued) 

 

Figure A.2  Geometric parameters defining a simply bent beam. 

 

 In order to calculate the strain, εxx(y), from the strain-curvature relationship of 

equation 2.10, we employ Hooke’s Law: 

 

   zzyyxxxx σσνσ
E
1ε 





       (2.11) 

 

Since the biaxial stress is isotropic in the plane of the film (σxx = σzz), no stress fields 

exist in the y-direction (σyy = 0), and the magnitudes of the bending stress-strain are 

dependent on the y-distance from the neutral axis, equation 2.11 reduces to: 

 

    yσ
E

ν1yε xxxx 





 

        (2.12) 
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Appendix A (Continued) 

Replacing σxx(y) with the result from the moment analysis in which the stress was related 

to the bending moment (equation 2.8), and then incorporating the relationship between 

curvature and strain (equation 2.10), the relation between curvature and the applied 

moment is: 

 

  






 






 
 3h

M12
E

ν1κ        (2.13) 

 

 

 

Figure A.3  Cantilever deformed by a bending moment. 
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